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Summary 

 Introduction 

 The "standard" coding scheme and its avatars 

 The impact of soft iterative decoding 

 Turbo-product codes 

 Low-density parity-check codes 

 High-speed parallel decoder architectures 
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The concept of coding gain 

 Curve A is the bit error 
probability versus SNR 
for uncoded binary 
antipodal modulation 

 

 Curve B is the best we 
can do (Shannon 
converse theorem) over 
unconstrained AWGN 
channels 

 

 Curve C is the best we 
can do (Shannon 
converse theorem) over 
binary symmetric 
channels 

 

Coding gain 
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The concept of coding gain 

 The maximum 
obtainable coding gain 
depends on the rate of 
the code, which in 
turns defines, for a 
given modulation, the 
spectral efficiency of 
the system 

 

 The coding gain 
depends also on the 
desired bit error 
probability 
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Coding for optical communications 

Codes for optical communication should yield: 

 

 Large coding gains (greater than 6 dB) with low 
complexity decoding 

 Concatenated algebraic codes with large block sizes 

 Very low bit error probabilities (10-12 - 10-15 ) 

 Large minimum distance (very low "error floor")            algebraic 

codes with large block sizes 

 High code rates (overhead lower than 25%) 

 Block codes  

 Very high information rates (up to 40 Gbit/s) 

 Low decoding complexity, hard or "quasi-hard" 

 Data flow demultiplexing or very fast hardware (up to 40 Gbit/s chip, 

Song et al., IEEE J. of Solid State, Nov. 2002) 
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The "standard" coding scheme and its avatars 

 ITU G.975 and ITU G.709 
recommendations are 
based on Reed-Solomon 
codes, which are non-
binary, systematic linear 
cyclic codes 

 

 The RS (255,239) code 
was suggested, leading  
to a 6.7% overhead 

 

 With hard decoding, a 
coding gain of 5.8 dB at 

bit error probability 10-13 
is achievable 
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The "standard" coding scheme and its avatars 
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 To increase the coding gain, a solution based on the concatenation 
of two RS codes with hard decoding has been proposed 
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The "standard" coding scheme and its avatars 

 The concatenation of two 
RS (255,239) codes leads to 
a 13.8% overhead 

 With hard decoding, a 
coding gain of 7.4 dB at bit 
error probability 10-13 is 
achievable 

 The concatenation of two 
RS codes, the outer a RS 
(255,239) and the inner a 
RS (255,223) leads to a 
22% overhead 

 With hard decoding, a 
coding gain of 7.9 dB at bit 
error probability 10-13 is 
achievable 
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The "standard" coding scheme and its avatars 

 "One-shot" hard decoding is 
not the optimum way to 
decode a concatenated code 

 Iterating several times the 
decoding algorithm, still 
based on hard samples, 
yields a further 
improvement 

 The concatenation of two 
RS (255,239) codes (13.8% 
overhead) with iterative 
hard decoding yields a 
coding gain of 8.3 dB with 4 
iterations 

 No scope to increase the 
number of iterations beyond 
4  
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The impact of soft iterative decoding 

 Soft versus hard decoding yields an increased coding gain 
of about 2 dB  

 Soft decoding has almost the same complexity as hard 
decoding for convolutional codes (the celebrated Viterbi 
algorithm) 

 For algebraic block codes, soft decoding is much more 
complex than hard decoding 

 Soft decoding of RS codes is an active research field; the 
proposed solutions, though, are still too complex for 
optical communication 

 We will describe two promising alternative schemes, 
based on turbo product codes and low-density parity-
check codes 
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The impact of soft iterative decoding 

 Three distinct regions of 
the bit error probability 
curves versus  signal-to-
noise ratio: the non-
convergence, waterfall 
and error  floor regions 

 

 The position of the error 
floor can be estimated 
by simulation (too 
complex at bit error 
probabilities below  

    10-12),  or by evaluating 
the minimum distance 
of the code and then 
analytical bounds 
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The impact of soft iterative decoding 

 The effect of the 
Gaussian 
approximation on 
the log-likelihood 
ratios evaluation 

 

 Continuous curve 
refers to the LLR 
evaluation using 
the Karhunen-
Loève technique 
to model the 
optical 
communication 
channel  
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Turbo product codes 

 Turbo product 
codes are serially 
concatenated 
block codes with 
interleaver 

 The concatenated 
code parameters 
are: 
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Turbo product codes 

 Turbo product code 
based on two 
(128,113) 
extended BCH 
codes, with 
minimum distance 
of 12 

 

 Overhead is 28%, 
and (extrapolated) 
coding gain is  11.3 
dB at bit error 
probability 10-13 

 

 The curves also 
show the effect of 
LLR quantization 
with different 
number of bits  
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Turbo product codes 

 State of the art in the use of block turbo codes is the 
experimental demonstration of a coding gain of 10.1 dB 

at bit error probability 10-13  using a code with 21% 

overhead and 3-bit soft decision at a data rate of 12.4 
Gbit/s  (T. Mizuochi et al., OFC 2003, March 2003) 
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 Proposed by Gallager in 1962, and almost forgotten for 3 
decades 

 Deeply investigated after the invention of turbo codes in 
1993 

 LDPC codes are binary, linear block codes with a highly 
sparse parity-check matrix 

 They can be regular (number of ones equal in all rows 
and column of the matrix), or irregular (they perform 
better than regular)  

 Encoding complexity is linear with the block size 

 Decoding is based on the message passing algorithm, a 
highly decentralized, iterative algorithm based on the 
repetition of simple computations in every node of the 
bipartite graph representing the encoder 

 

Low-density parity-check codes 
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Low-density parity-check codes 
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Low-density parity-check codes 

 Performance of two 
irregular LDPC 
codes 

 

 LDPC (3367, 3094) 
has an overhead of 
8.8%, with a 
coding gain of 6.7 
dB at bit error 

probability of 10-9 

 LDPC (3367, 2821) 
has an overhead of 
19.3%, with a 
coding gain of 8.1 
dB at bit error 

probability of 10-9 

          (I. B. Djordjevic et 
al., OFC 2004) 
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Low-density parity-check codes 

 Effect of quantization 
on LDPC decoders 

 

 LDPC (3276, 2556) 
has an overhead of 
28.1%, with a coding 
gain of 8.5 dB at bit 

error probability of       
10-7 

 

 LDPC message-
passing decoders are 
more robust than 
product turbo 
decoders 

          (G. Bosco and  

        S. Benedetto, TIWDC 
2004) 
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High-speed parallel decoder architectures 

 RS hard decoders working at data rates as high as 40 Gbit/s have 
already appeared 

 

 The design of very high-speed iterative decoders requires decoding 
architectures with a large degree of parallelism 

 

 LDPC message-passing decoders are ideal for parallel implementation, 
provided that the "collision" problem arising in writing into/reading from 
the common memory is solved 

 One possibility is to use LDPC encoders whose parity-check matrix has been 

constrained to be collision-free 

 A second, more general approach consists in reworking the addressing 

strategy in such a way that every  code can be made collision-free (A. Tarable 

et al., IEEE Transactions on Inf. Theory, Sept. 2004) 

 

 The decoder complexity stemming from the large number of iterations 
required by the message-passing algorithm can be reduced through the 
proper use of stopping criteria and a small amount of extra memory 
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Conclusions 

 Constrained to hard, non-iterative decoding, the 
achievable coding gain for optical communications seems 
limited to roughly 8 dB with overheads in the order of 
22% 

 

 Use of soft decoding and iterative decoding algorithms 
can increase the coding gain up to more than 10 dB with 
the same overhead, BUT this requires: 

 Very high speed A/D converters, with 2-4 bits of precision 

 Highly parallel decoder architectures, with significant complexity 

 Unless fast HW is available, mixed simulation-analytical approaches 

to estimate the coding at very low bit error probabilities. In particular, 

the evaluation of the code minimum distance is required, a problem 

that is in general NP-complete  

 


