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 Modeling of fiber nonlinearity

 Modeling approximations

 The GN/EGN model family

 Non-linearity modeling for high symbols rates and Gaussian constellations

 Mitigation of fiber nonlinearity

 Theoretical limits

 Practical performance limits
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Outline



4

MODELING OF FIBER NONLINEARITY



 Any form of analytical description of the non-linear behaviour of the optical fiber

 Example: coupled non-linear Schrödinger equations

 Numerical integration within a Monte-Carlo simulation environment

 Goal: to find simpler yet accurate models in order to quantify the system impact 
of the fiber non-linear behaviour
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Non-linear fiber propagation models

G. P. Agrawal, Nonlinear Fiber Optics, 4th edition. Academic Press, 2007, Chapter 6.



 Examples:

 time domain

 frequency domain

 Volterra-based 

 first order perturbation

 higher-order perturbation

 regular perturbation (RP, with variants)

 logarithmic perturbation (LP, with variants)

 pulse-collision based

 more classes and sub-classes based on specific assumptions and approximations…

 In this talk, I will focus on frequency-domain RP first-order models
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Families of models



 Manakov equation

 Perturbation approach

 NLI as additive Gaussian noise

 Locally white NLI

 Signal Gaussianity

 Incoherent NLI accumulation
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Modeling approximations



 It’s based on an analytical average over the random evolution of the state-of-

polarization (SOP) along the fiber

 It captures the non-linear effects of one polarization onto the other, but averages 

over the fast dynamic of SOP variations  

 It neglects both linear and nonlinear effects of PMD
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Manakov equation

 
         

 
         

2
22

2

2

2
22

2

2

, 8
, , , , ,

2 9

, 8
, , , , ,

2 9

x

x x x y x

y

y y x y y

A z t
j A z t A z t j A z t A z t A z t

z t

A z t
j A z t A z t j A z t A z t A z t

z t


 


 

           

      

    



 Assumptions:

 The signal propagates linearly from input to output

 At each point along the fiber, it excites fiber nonlinearity and creates the NLI 
disturbance

 At the end of the fiber, the linearly propagated signal and the NLI are 
summed (NLI noise can be represented as an additive noise term)

 In the framework of first-order perturbation analyses, the NLI power is 
proportional to :

 where  is a coefficient that depends on the fiber parameters and the transmitted 
signal characteristics. 
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First-order regular perturbation
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 Assumption:

 the NLI at the output of the link can be represented as additive Gaussian 

noise, circular and independent of either the signal or ASE noise

 Key implication: the channel performance can be characterized based on a 

modified “non-linear” OSNR:

 Pch : power of channel under test

 PASE : power of ASE noise 

 PNLI is the power of NLI
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NLI additive Gaussian noise approximation
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 Assumption:

 the PSD of NLI is locally flat (over a single channel bandwidth)

 This assumption is acceptable for approximate system performance 

assessment.

 It should be removed for high-accuracy predictions.
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Locally white NLI noise approximation

Tx signal PSD

PSD of NLI

Approximated

PSD of NLI



 Assumption:

 the transmitted signal can be modeled

as a stationary circular Gaussian noise, 

whose PSD is shaped as the PSD of the 

actually transmitted WDM channels.

 This approximation allows to drastically simplify the model derivation and 

strongly decreases the model final analytical complexity. 

 Using this assumption, the impact of NLI is always overestimated for QAM 

transmission formats.
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The signal Gaussianity approximation

500 km of SSMF fiber



 Assumption:

 the NLI produced in each span adds up incoherently (i.e., in power) at the 

receiver site.

 In reality, the NLI contributions should be added together coherently (i.e., at the field 

level) keeping both their amplitude and phase into account

 The accuracy of this approximation is quite poor at very low span count and at 

very low channel count.
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The incoherent NLI accumulation approximation
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Assumption EGN model GN model iGN model

Manakov equation X X X

1st order regular perturbation X X X

Signal Gaussianity X X

Incoherent NLI accumulation X

NLI as additive Gaussian noise Approximations that can be applied to all 

models in order to simplify the computationsLocally white NLI
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The EGN-GN model family

• iGN – P. Poggiolini et al., “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical 

Transmission Links”, IEEE Photon. Technol. Lett. 23(11), p. 742 (2011).

• GN – P. Poggiolini “The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical 

Systems,”J. Lightwave Technol. 30(24),  p.3857 (2012). 

• EGN – A. Carena et al., “EGN model of non-linear fiber propagation,” Opt. Exp. 22(13), p. 16335, 2014.



 All approximations listed in the previous slide, plus …

 Equal spans

 Equal channels (same power, same spectrum with bandwidth ~Rs)

 The model equations become more and more complex, as well as more and 

more accurate, as the various assumptions are removed

15

The simplest iGN closed-form solution
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The GN-model reference formula
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 For identical spans with lumped amplification:
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Components of NLI

Short-correlated 

circular noise

Mainly format-

independent

Long-correlated phase and 

polarization rotation (PPRN) noise

Format-dependent

 Negligible for constant-modulus 
formats 

 Increases with the cardinality of the 
constellation

 Maximum for Gaussian 
constellation

 Can be partially mitigated by CPE 

PRACTICAL IMPLICATION

If all the long-correlated phase noise is 
ideally taken out, then any PM-QAM system 
is well described by the EGN model,  
calculated as if PM-QPSK was transmitted 
(EGN-cm model)



Non-Linearity Modeling for 

High Symbol Rates and 

Gaussian Constellations
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Very different scenarios …

WDM 2 THzB 

f
64 

GBaud

f
256 

GBaud

P. Poggiolini et al., “Non-Linearity Modeling at Ultra-High Symbol Rates,” Proc. Of OFC 2018, San Diego 

(USA), Mar. 2018.

32 

GBaud
f

f128 

GBaud



32 Gbaud - 48 channels - SMF - 100km spans
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32 Gbaud - 48 channels - SMF - 100km spans
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256 Gbaud - 6 channels - SMF - 100km spans
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Gaussian constellations – 64 Gbaud
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Gaussian constellations – 256 Gbaud
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 The EGN model appears to be extremely reliable, across all the explored 

parameter space (ultra-high symbol rates, QAM and Gaussian constellations). 

 It coincides with the much computationally simpler GN model for Gaussian 

constellations. 

 Going towards higher symbol rates, the NLPN decreases, as shown by the 

EGN-cm model  mitigating it is easier.

 NLPN has a stronger impact on Gaussian-like constellations [*]  averaging 

(correlation-based) non-linear phase-noise mitigation shows relatively small gain. 
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Key take-aways

[*] D. Pilori, L. Bertignono, A. Nespola, F. Forghieri, and G. Bosco, “Comparison of probabilistically shaped 

64QAM with lower cardinality uniform constellations in long-haul optical systems,” Journal of Lightwave

Technology, vol. 36, no. 2, pp. 501–509, Jan 2018.
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MITIGATION OF FIBER NONLINEARITY



 Several nonlinearity compensation and mitigation techniques have been 

proposed to reduce the power of the NLI noise. 

 In the following, we will focus on:

 digital backpropagation (DBP)

 symbol-rate optimization (SRO)
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NLI mitigation techniques



Ideal gains of SRO and DBP

(predicted by the models)
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 What is the symbol rate which minimizes NLI ?...

…having fixed:

 the total WDM bandwidth (BWDM=504 GHz, 1.5 THz, 2.5 THz, 5 THz)

 the modulation format and roll-off (PM-QPSK or PM-16QAM, r=0.05)  

 the relative frequency spacing (f=1.05 Rs)  

 EDFA-only amplification (F=5 dB)

 SSMF fiber (100-km span length)
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The analyzed set-up

P. Poggiolini et al., “Analytical and experimental results on

system maximum reach increase through symbol rate

optimization,” J. Lightw. Technol., 34(8), p. 1872 (2016).



 PM-QPSK, roll-off 0.05, spacing 1.05 x (symb rate), SMF, 100 km spans, 50 spans
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SRO prediction by EGN model 
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Backward Propagation vs. SRO – PM-QPSK
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Backward Propagation vs. SRO – PM-QPSK
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Backward Propagation vs. SRO – PM-16QAM
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Practical limitations 

of  SRO and DBP
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 19 channel WDM comb, with channel spacing 37.5 GHz, for a total WDM bandwidth of 

710 GHz
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SRO through sub-carrier multiplexing
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Reach curves over PSCF fiber (108 km spans)
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 The gain predicted by the analytical model cannot be fully exploited due to practical 

implementation issues (higher sensitivity to transceiver impairments and phase noise) 
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Reach curves over PSCF fiber (108 km spans)
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DBP performance vs. number of steps per span

 Modulation format: PM-64QAM

 Roll-off: 0.2

 SSMF fiber - 100 km spans

 EDFA noise figure: 6 dB

 Target GMI: 0.87*6=5.22 bit/symb 

Target SNR: 17.37 dB

 Channel spacing: 1.2 Rs = 76.8 GHz

 Single-channel DBP

20 %
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DBP performance vs. number of steps per span

 Modulation format: PM-64QAM

 Roll-off: 0.2

 SSMF fiber - 100 km spans

 EDFA noise figure: 6 dB

 Target GMI: 0.87*6=5.22 bit/symb 

Target SNR: 17.37 dB

 Channel spacing: 1.2 Rs = 76.8 GHz

 Single-channel DBP

12 %
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DBP performance vs. number of steps per span

 Modulation format: PM-64QAM

 Roll-off: 0.2

 SSMF fiber - 100 km spans

 EDFA noise figure: 6 dB

 Target GMI: 0.87*6=5.22 bit/symb 

Target SNR: 17.37 dB

 Channel spacing: 1.2 Rs = 76.8 GHz

 Single-channel DBP

23 %



 The NLI analytical models are useful tools to obtain an accurate prediction of 

the ultimate performance achievable by the various mitigation techniques. 

 The actual performance gain will also depend on several implementation 

issues that cannot be easily included in the analytical estimations, such as:

 sub-optimum performance of low-complexity DBP algorithms 

 higher impact of NLPN in digital multi-subcarrier systems

which reduce the nonlinearity mitigation benefits.
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Conclusions
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