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OUTLINE



▪ Reconfigurable optical networks allow and 
to dynamically adapt to traffic demand

▪ Network control plane must implement 
efficient resource allocation
▪ Physical layer awareness is fundamental for the 

evaluation of Quality of Transmission

▪ Application of SDN paradigm through 
virtualization of network elements and 
functions

▪ All network elements (i.e amplifiers, 
switches et al.) must be abstracted to allow 
fast reconfiguration
▪ Real-time models are needed
▪ Machine Learning can be a solution
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COMMON SCENARIO: DYNAMIC NETWORKS
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ML applied to design and analysis 
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OUTLINE – PART ONE



▪ Raman amplification is a promising 
solution for multi-band optical systems
▪ Availability of amplification in any bands
▪ Broadband amplification in multi-pump 

configuration
▪ Flexible and programmable gain by 

properly adjusting pump powers and 
frequencies
▪ Arbitrary gain profiles compensating for tilts 

and ripples in hybrid solution
▪ It allows to avoid Gain-Flattening Filters

▪ Lower noise figure than other 
amplification solutions because it is a 
distributed gain
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WHY RAMAN AMPLIFICATION?
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ONE.1
RAMAN AMPLIFIERS 
AND MACHINE LEARNING
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THE RAMAN AMPLIFIER

Pumps

(f1,P1,…, fn, Pn)

RAMAN AMPLIFIER

SMF (𝐿𝑠𝑝𝑎𝑛)

NUMERICAL RAMAN 

SOLVER

f [THz]185 196

G(f)

OUTPUT

Wavelength

Division

Multiplexing 

(WDM) comb

185 196 f 

[THz]

1
 m

W 1 Nch

• [J. Bromage, ‘Raman Amplification for Fiber Communications Systems’, Journal of Ligthwave Technology, vol. 22, no. 1, pp. 79-93, 2004.
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MACHINE LEARNING
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LITERATURE REVIEW
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LS-SVR based RA design

• Jing Chen et al 2018 J. Opt. 20 025702, https://doi.org/10.1088/2040-8986/aaa2a6

L
S

-S
V

R
 M

O
D

E
L

RESULTS



13

ML-based RA design

• D. Zibar, A. Ferrari, V. Curri and A. Carena, “Machine Learning-based Raman amplifier design”, 2019 Optical Fiber 

Communications Conference and Exhibition (OFC), 2019.

• D. Zibar , A. M. Rosa Brusin, U. C. de Moura, F. Da Ros, V. Curri, and A. Carena “Inverse System Design Using Machine 

Learning: The Raman Amplifier Case," in Journal of Lightwave Technology, doi:10.1109/JLT.2019.2952179
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ML-based RA+EDFA design over C+L-band

• M. Ionescu, "Machine Learning for Ultrawide Bandwidth Amplifier Configuration," 2019 21st International Conference on 

Transparent Optical Networks (ICTON), 2019, doi: 10.1109/ICTON.2019.8840453.
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ML-based RA design over S+C+L-band

• X. Ye, A. Arnould, A. Ghazisaeidi, D. Le Gac and J. Renaudier, "Experimental Prediction and Design of Ultra-

Wideband Raman Amplifiers using Neural Networks," 2020 Optical Fiber Communications Conference and 

Exhibition (OFC), 2020.

GENERATIVE MODEL RESULTS

INVERSE MODEL DESIGN RESULTS
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ML-based RA design over S+C+L-band

• U. C. De Moura et al., "Multi-band programmable gain Raman amplifier," in Journal of Lightwave Technology, 

doi: 10.1109/JLT.2020.3033768.
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(c),(f): Predicted 
and target flat and 
tilted (on–off) gain 
profiles with 
respect to 
frequency
(i): Maximum error 
of gain prediction 
with respect to 
total bandwidth
(l): Root-mean-
square-error of 
gain prediction 
with respect to 
total bandwidth.



▪All these works presented in previous slide 
have a COMMON FACTOR: they assume at 
the input of the Raman Amplifier FULL 
LOAD condition 

▪ In dynamically reconfigurable networks, 
optical links operate with PARTIAL LOADS
▪Does this have an impact on the 

behaviour of the Raman amplifier?
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THE COMMON FACTOR
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EFFECT OF PARTIAL LOADS ON RA

∆G > 2 dB
0.5 dB < ∆G < 1.8 dB

∆G < 0.2 dB

Fixed pump powers and frequencies:
• 𝑓𝑝=[210.51  207.28  204.15  201.11  198.16] THz
• 𝑃𝑝=[246.7,237.7,194.2,192.7,168.8] mW
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ONE.3
LOAD AWARE
RAMAN AMPLIFIER ANALYSIS
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MACHINE LEARNING FRAMEWORK
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Load Unaware NN (LU-NN)



▪ C+L bands: 220 frequency slots of 
50 GHz
▪ Partial load: each frequency 

slot can be ON or OFF

▪ In partial load scenario: 2220

possible combinations + pump 
powers arbitrariness
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SIMPLIFYING THE PROBLEM

▪ 10 adjacent frequency slots 
grouped together to form a sub-
band

▪ Each sub-band is 500 GHz wide 
and can assume two states: ON or 
OFF

▪ Total of 22 sub-bands over the 
entire 11 THz C+L-band

• 12 sub-bands in the L-band 
• 10 sub-bands in the C-band

TOO LARGE!

SOLUTION



▪ General data
▪ Five pumps
▪ Fixed pump frequencies 𝑓𝑝=[210.51  207.28  204.15  201.11  198.16] THz
▪ C+L band: 𝑓 ∈ [185,196] THz
▪ 22 sub-bands: 500 GHz each

▪ We generate 11000 different partial loads configurations
▪ To emulate all load conditions, we consider different classes (C, 

L and C+L) and sub-classes (number of sub-band ON) of 
elements with randomly selected sub-band positions

▪ Using the numerical Raman solver included in GNpy we generate 
the corresponding gain and noise profiles
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DATASET GENERATION
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MACHINE LEARNING FRAMEWORK
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▪ Training method: Random projection
▪ 1 hidden layers, 1980 neurons per layer, activation function: tanh
▪ Same approach can also be used to predict ASE noise profile

generated by Raman amplifier

Load Unaware NN (LU-NN)
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TESTING PROCESS
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TESTING RESULTS: LU-NN vs LA-NN
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TESTING RESULTS: LU-NN vs LA-NN

Median ~ 0 dB
Box size < 0.14 dB
Whisker size < 0.39 dB

Box: 50% of cases

Whiskers: 90% of cases

A. M. Rosa Brusin, U. C. de Moura, V. Curri, D. Zibar and A. Carena, "Introducing Load Aware Neural Networks for 

Accurate Predictions of Raman Amplifiers," in Journal of Lightwave Technology, vol. 38, no. 23, pp. 6481-6491, 

Dec. 1, 2020, doi: 10.1109/JLT.2020.3014810.
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ONE.4
LOAD AWARE
RAMAN AMPLIFIER DESIGN
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MACHINE LEARNING FRAMEWORK

Load Aware NN (LA-NN)
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TESTING PROCESS
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TESTING RESULTS: ARBITARY PROFILES
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TESTING RESULTS: FLAT PROFILES

▪ 1000 different partial loads
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TESTING RESULTS: FLAT PROFILES

▪ 1000 different partial loads
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ONE.5
CONCLUSIONS



▪For ultra-wide band transmission, Raman 
amplification is an enabler to deliver arbitrary gain 
profiles at any wavelengths

▪Machine Learning based methods allow for fast and 
accurate Raman amplifier analysis and design

▪ Load awareness is fundamental for applications in 
dynamically reconfigurable networks
▪ Direct NN predicts gain and noise profile to be effectively 

used in network controller 
▪ Inverse NN predicts pump powers to design the required 

gain profile
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PART ONE - CONCLUSIONS



PART TWO
ML applied to the management 
of NxN switches
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TWO.1 PIC and Machine Learning
TWO.2 NxN switch: topologies and implementations
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TWO.4 Estimating QoT in a NxN switch 
TWO.5 Conclusions
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OUTLINE – PART TWO
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TWO.1
PIC and Machine Learning



▪ Photonic Integrated Circuits (PICs) are an enabling technology for 
future optical networks
▪ Silicon Photonics is becoming a mature PIC technology

▪ PIC can implement complex functionalities at the photonic level

▪ Network elements, especially photonic switching systems, can be 
implemented as PIC

▪ Future ROADM architectures will possibly be based on WSS and 
switching elements based on PIC
▪ Small footprint
▪ Low energy consumption
▪ Low latency
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PIC



▪ An interesting innovative application of ML to PIC is to apply it to the 
design of physical structures
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ML-based PIC design

• Ma, W., Liu, Z., Kudyshev, Z.A. et al. Deep learning for the design of photonic structures. Nature Photonics 15, 77–90 (2021). https://doi.org/10.1038/s41566-020-0685-y



▪ In recent years several works targeted Machine Learning application to evaluate 
Quality of Transmission (QoT) of lightpaths

▪ Most of these works consider only the impact of propagation effects
▪ ASE noise accumulation and fiber non-linear effects

▪ In flexible and dynamic optical networks, the impact of ROADM is not negligible
▪ Filtering and switching sections must be properly analyzed 

▪ ML can be applied to estimate QoT degradation in complex PIC structures

▪ A further novel application we have targeted is the prediction of control signal for 
complex PIC structures
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QoT estimation and Control Signals prediction

• Rui Manuel Morais and João Pedro, "Machine Learning Models for Estimating Quality of Transmission in DWDM Networks," J. Opt. Commun. Netw. 10, D84-D99 (2018)

• Cristina Rottondi, Luca Barletta, Alessandro Giusti, and Massimo Tornatore, "Machine-Learning Method for Quality of Transmission Prediction of Unestablished 

Lightpaths," J. Opt. Commun. Netw. 10, A286-A297 (2018)

• Ihtesham Khan, Muhammad Bilal, M. Umar Masood, Andrea D’Amico, and Vittorio Curri, "Lightpath QoT computation in optical networks assisted by transfer learning," J. 

Opt. Commun. Netw. 13, B72-B82 (2021)
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TWO.2
NxN switch:
topologies and implementations



▪We consider the following NxN switch application:
▪At each of the N inputs we have a channel at a specific 

wavelength
▪Based on M electrical control signals, we define a switch 

state where at the output ports we have a specific channel 
permutation
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Switching application



▪ Physical layouts
▪ Beneš network
▪ Honey-Comb Rearrangeable 

Optical Switch (HCROS) 

▪ In all cases, the elementary 
Optical Switching Elements is a 
2 x 2 unit
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Switching topologies
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M=49

M=36
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▪ Several topologies are available to implement an OSE as a PIC
▪ Micro-Ring Resonators (MRR)
▪ Mach-Zehnder Interferometers (MZI)
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Optical Switching Elements (OSE)

FIRST ORDER MRR

SECOND ORDER MRR

MZI

MRR



▪ Synopsys design suite allows a VERTICAL approach in simulation analysis
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Physical layer simulations

PRODUCTION-READY 
LAYOUT MASK

PDK-BASED
MODEL

NxN SWITCH 
OptSim MODEL
(8x8 Benes)

OSE
OptSim MODEL

FULL SYSTEM
OptSim MODEL
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TWO.3
Predicting control signals in a NxN switch



▪ Each state of the switch is defined by its unique control vector 
comprising of M control signals having 2M combination

▪ At each state corresponds a permutation of the input wavelengths 
at the output ports
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Switching operations

• Black-box approach
• Reduced number of elements in 

the dataset: no need to analyze 
the full space



▪ We trained M-parallel neural networks to predict the control states 
based on the required output wavelength permutation

▪ It is an inverse design approach 
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Control signal predictions

PREDICTION ACCURACY



▪ Analyzing control state predictions, we found that in ALL cases we have 
single errors, mainly in the last stage of the topology

▪ We proposed a simple heuristic: flipping one at a time each of the M 
control signals, we can find the correct state
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Improve prediction performances

M=26

Beneš

10x10
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TWO.4
Estimating QoT in a NxN switch



▪ Transmission Model
▪ Inputs and  outputs stages are 

connected to a transmitter and 
receiver module

▪ PM-64QAM modulation format 
(Symbol rate 50 GBaud)

▪ OSNR penalty as QoT metric
▪ BER counting technique

▪ Target Bit-Error Rate (BER): 5·10-3

▪ Simulations are performed using 
OptSim
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QoT analysis for a 600G system



▪ Beneš 8x8
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QoT predictions

QoT PREDICTION 
ACCURACY
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TWO.5
Conclusions
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PART ONE - CONCLUSIONS

▪ We demonstrate the 
operation of two ML 
agents that allow for an 
autonomous 
management of PIC 
based NxN switches

▪ They are enabling 
solutions to implement 
SDN paradigm down to 
the physical layer of 
dynamic optical 
networks
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