Time-Division Hybrid Modulation Formats: Tx Operation Strategies and Countermeasures to Nonlinear Propagation

V. Curri(1), A. Carena(1), P. Poggiolini(1), R. Cigliutti(1)
F. Forghieri(2),
C. Fludger(3), T. Kupfer(3)

(1) DET, Politecnico di Torino, Torino, Italy. curri@polito.it
(2) Cisco Photonics Italy srl, Monza, Italy. fforghie@cisco.com
(3) Cisco Optical GmbH, Nordostpark 12-14, 90411, Nuremberg, Germany. cfludger@cisco.com

Motivation and outline

- Symbol-rate and wavelength grid given: continuity of reach vs. spectral efficiency
- Use of reduced-complexity “squared” constellations
- Flexible network optimization
- Transmitted frame and operation-setting parameters
- Strategies to define the Tx operation and b2b performance
- Nonlinear propagation of NyWDM channels on SSMF and NZDSF
 - Effects of frame length
 - Benefits of predistortion
 - The polarization interleaving technique
- Comments and conclusions
Tx frame and operation-setting parameters

- Frame: \(M = M_1 + M_2 \) [symbols]
- \(M_1 \) symbols
- \(M_2 \) symbols
- Modulation Format \(F_1 \): \(P_1, \text{SNR}_1, \text{BpS}_1 \)
- Modulation Format \(F_2 \): \(P_2, \text{SNR}_2, \text{BpS}_2 \)

Format ratio: \(FR = 100 \frac{M_2}{M} \)

Power ratio: \(PR = \frac{P_2}{P_1} \)

- OSNR in \(R_s \): \(SNR = \left(1 - \frac{FR}{100} \right) \cdot \text{SNR}_1 + \frac{FR}{100} \cdot \text{SNR}_2 \)
- Average power: \(P_{Tx} = \left(1 - \frac{FR}{100} \right) \cdot P_1 + \frac{FR}{100} \cdot P_2 \)

Overall bit-per-symbol
- \(\text{BpS} = \left(1 - \frac{FR}{100} \right) \cdot \text{BpS}_1 + \frac{FR}{100} \cdot \text{BpS}_2 \)

Overall BER
- \(BER = \frac{1}{\left(1 - \frac{FR}{100} \right) \cdot \text{BpS}_1 + \frac{FR}{100} \cdot \text{BpS}_2} \left(\frac{\text{SNR}}{\left(1 - \frac{FR}{100} \right) \cdot \text{BpS}_1 + \frac{FR}{100} \cdot \text{BpS}_2} \right) \cdot \Phi \left(\frac{PR}{\left(1 - \frac{FR}{100} \right) + \frac{FR}{100} \cdot PR} \right) \)

Strategies for Tx working point

Given \(F_1, F_2 \) and \(FR \), \(PR \) is the parameter to set according to one of the following strategies:

- **a)** Min BER: \(PR \) is obtained minimizing \(SNR \) in BER equation \(\Rightarrow \) \(PR \) varies with the target BER

- **b)** \(BER_1 = BER_2 \): both \(F_1 \) and \(F_2 \) are forced to operate at the same BER \(\Rightarrow \) \(PR \) is consequently defined

- **c)** \(d_1 = d_2 \): the minimum Euclidean distance \(d_i (i=1,2) \) is kept equal for both \(F_1 \) and \(F_2 \) \(\Rightarrow \) \(PR \) is a constant depending on constellations

- **d)** \(PR = 0 \) dB: it keeps constant power during transmission \((P_1 = P_2 = P_{Tx}) \) \(\Rightarrow \) the highest-cardinality modulation format operates at the FEC cliff, the other is working error free
PR vs. BER for different strategies

F1: PM-QPSK, F2: PM-16QAM, BpS=6 \(\rightarrow\) FR=50%

\[d_1 = d_2 \]

\[\text{Min } BER \]

\[\text{BER}_1 = \text{BER}_2 \]

\[PR = 0 \text{ dB} \]

\[\text{BER}_T = 2 \cdot 10^{-2} \]

BER vs. SNR for different strategies

F1: PM-QPSK, F2: PM-16QAM, BpS=6 \(\rightarrow\) FR=50%

\[\text{BER}_T = 2 \cdot 10^{-2} \]

\[PR = 0 \text{ dB} \]

\[d_1 = d_2 \]

\[\text{PM-8QAM} \]

\[\text{BER}_1 = \text{BER}_2 \]

\[\text{Min } BER \]

Very similar behavior
Combining the first “squared” constellations...

Very small penalty using $BER_1=BER_2$ or $d_1=d_2$

... and the fiber propagation?

- F1: PM-QPSK, F2: PM-16QAM with “Min BER” Tx
- BpS=6 \Rightarrow $FR=50\%$
- $R_s=32$ Gbaud
- 9-channel NyWDM comb @ $\Delta f=33.6$ GHz=$1.05 \cdot R_s$
- $BER_T=2 \cdot 10^{-2}$
- Multispan link with $L_s=100$ km, EDFA with $NF=5$ dB
- Two typical fiber types:
 - SSMF
 - $\alpha_{dB}=0.22$ dB/km, $D=16.7$ ps/nm/km, $\gamma=1.3$ $1/W/km$
 - NZDSF
 - $\alpha_{dB}=0.22$ dB/km, $D=3.8$ ps/nm/km, $\gamma=1.5$ $1/W/km$
Maximum reach vs. GN-model

FR=50%, F1: PM-QPSK, F2: PM-16QAM, BER_T=2·10^{-2}

Power per channel

The frame length does matter!

Predistortion: Max Reach vs. D_{pre}

FR=50%, F1: PM-QPSK, F2: PM-16QAM, BER_T=2·10^{-2}

Proper predistortion enables GN-model-predicted reach
Polarization Interleaving (PI)

In order to keep constant power...

PI helps and reduces the required predistortion.
Comments and conclusions

- Strategies for Tx setup giving b2b performance
- Combining “squared” constellation \(\Rightarrow \) continuity in spectral efficiency w/o substantial b2b penalties with respect to specific modulation formats
- Nonlinear propagation: the shorter the frame length, the better
- Predistortion enables to obtain GN-model predictions
- Polarization interleaving helps and substantially reduces the required predistortion

Acknowledgements

This work was supported by CISCO Systems within a SRA contract

The simulator OptSim™ was supplied by Synopsys Inc.