Studio sperimentale dell’impatto di ridotte spaziature inter-canale sulla trasmissione di un super-canale a 1Terabit/s

G. Gavioli, E. Torrengo, Gabriella Bosco (Politecnico di Torino)
A. Carena, V. Curri, V. Miot, P. Poggiolini (Politecnico di Torino)
M. Belmonte (OCLARO Corporation)
F. Forghieri, C. Muzio, S. Piciaccia (CISCO Photonics)
A. Brinciotti, A. La Porta (Linkra-Teleoptix)
C. Lezzi (FASTWEB)
S. Savory (University College London)
S. Abrate (Istituto Superiore Mario Boella)
Aims of the work

High spectral efficiency is needed to generate Terabit “super-channels” for a future Terabit Ethernet Standard. It can be obtained by:

- Higher order modulation formats (QAM 8-16)
- Decreasing the channel spacing (OFDM, Co-OFDM)

Co-OFDM operates with sub-carriers spaced at the Baud rate

- 1T/s Co-OFDM transmission over 7200km has been recently demonstrated (Record Spectral Efficiency x Distance of 27000 km·b/s/Hz)

However, Co-OFDM requires a complex transceiver architecture:

- Frequency synchronization of the sub-carriers
- Symbol transition alignment and a broadband RX

Here, we investigate a novel technique to generate 1Tb/s Superchannel by multiplexing sub-carriers close to Baud-Rate spacing using optical spectral reshaping to minimize cross-talk
CONCEPT: Before combining into a Superchannel the sub-carriers are narrow-filtered (high order Gaussian filter) to remove the cross talk.
This approach is also known as “Nyquist-WDM” (G. Bosco et al., “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems”, to appear in Photonics Technology Letters).
OSNR penalty vs. carrier spacing

Contour plot for BER = $4 \cdot 10^{-3}$ (Baud Rate = 27.75 Gbaud)

Spacing of 1.2 penalty-free

In this work channel spacing of 1.1 and 1.2 x Baud Rate is investigated
Sub-carriers generation at 1.1xBaudRate

\[\Delta f = 27.5\text{GHz} \quad (1.1\times \text{Baud Rate}) \]

Waveshaper transfer function

- **Power (dB)**
- **B.W. = 27GHz**
- **2nd order SuperGaussian filter**

1Tb/s Superchannel spectrum

- **Power (dB)**
- **275GHz**
- **10ch. \times 100Gb/s at 1.1BaudRate**
Sub-carriers generation at 1.2xBaudRate

- 50Gb/s QPSK Transmitter
- Synthesizer Frequency Shifter
- 10ch. x 100Gb/s at 1.2BaudRate

Δf = 30GHz (1.2xBaud Rate)

- 25Gb/s PPG
- Nested MZ
- Pol-Mux
- Optical filter

Waveshaper transfer function

- BW = 29GHz
- 2nd order SuperGaussian filter

1Tb/s Superchannel spectrum

- 300GHz
- 10ch. x 100Gb/s at 1.2BaudRate

λout = λ1+(λ1+Δf)...

.....+(λn+Δf)
Back to back sensitivity for 5th carrier

<table>
<thead>
<tr>
<th>Sensitivity (3×10^{-3}) measured on a single sub-carrier at 25 GBAud:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 15 dB for Waveshaper BW = 29GHz (channel spacing 1.2 B\textsubscript{R})</td>
</tr>
<tr>
<td>• 15.1 dB for Waveshaper BW = 27GHz (channel spacing 1.1 B\textsubscript{R})</td>
</tr>
</tbody>
</table>
Test-bed: Installed transmission fiber

Photon Labs
Politecnico of Turin

Installed SSMF fibre rings
Metro network Fastweb

<table>
<thead>
<tr>
<th>Length (km)</th>
<th>Loss (dB/km)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x40</td>
<td>0.245</td>
<td></td>
</tr>
<tr>
<td>2x20</td>
<td>0.235</td>
<td>16.14</td>
</tr>
<tr>
<td>2x10</td>
<td>0.264</td>
<td></td>
</tr>
</tbody>
</table>

City of Turin
1Tb/s Transmission over installed fibre

FASTWEB SMF dark fibre installed in the city of Turin
Span length 63.6km (42Km + 21.6Km) Loss 18dB
The maximum reach: from 2600 km to 2200 km when carrier spacing is reduced from 1.2 to 1.1 x Baud rate due to inter-channel nonlinearity.
Recent developments

- Experimental results of transmission of PM-QPSK Terabit superchannels over Pure-Silica-Core Fiber (PSCF) with Raman amplification
 - 30 Gbaud, 33 GHz spacing (1.1 x baud-rate)
We have experimentally demonstrated the generation of a Terabit Superchannel using a novel multi-carrier transmitter based on sub-carriers spectral reshaping to minimize cross-talk.

Superchannel transmission experiments have demonstrated:
- Maximum reach of 2600 km over SMF + EDFA only
- Maximum reach increased to 10000 km over PSCF + hybrid Raman/EDFA amplification

Our experiments show that, thanks to optical carrier reshaping at the transmitter, a spectral efficiency close to Co-OFDM can be achieved with a simpler transceiver architecture.
Acknowledgments

This work was supported by the European Union within the BONE-project (“Building the Future Optical Network in Europe”), VCE-T, and within the EURO-FOS project, both Networks of Excellence funded by the European Commission through the 7th ICT-Framework Programme.