ROUTING SPACE SIZE ESTIMATION FOR RECONFIGURABLE OPTICAL NETWORKS

Alessio Ferrari, Mattia Cantono, Vittorio Curri
DET, Politecnico di Torino, Torino, Italy
alessio.ferrari@studenti.polito.it

ABSTRACT

We propose a heuristic method. The aim is to find a reasonable estimation of \(K_{\text{MAX}} \). This parameter represents the number of lightpath per node pairs to be used in the routing algorithm.

MOTIVATIONS

In the routing and wavelength allocation (RWA) process, usually, a \(k \) shortest path algorithm is used. The choice of the maximum value of \(k \) \((K_{\text{MAX}})\) is crucial for the RWA algorithm performance. A too small value enhances the frequency of blocking events. A too large value slows down the RWA process.

METHODOLOGY

INPUT:
- Network topology
- The connectivity matrix \(CM \)
- The percentile of allocated LP: \(\alpha \)

ALGORITHM:
1. Compute the routing space using the \(k \) shortest path algorithm: \(LP^k_{\text{SD}} \)
2. Sort the \(LP^k_{\text{SD}} \) based on a priority principle
3. Allocate the \(CM \) following the order
4. Evaluate the CDF: \(F_k(k) \) of allocated \(LP^k_{\text{SD}} \)
5. Compute: \(K_{\text{MAX}} = F_k^{-1}(\alpha) \)

PRIORITY TO:
- Higher Number of hops: \(m_i = \sum_{i \in \text{E}} 1 \)
- LP with link with higher occurrence
- Higher total occurrence: \(m_{\text{total}} = \sum_{i \in \text{E}} O(l) \)

TEST:

The SNAP\(^{[1][2]} \) is run with several \(K_{\text{MAX}} \) and the blocking ratio \(B_R \) is computed.

\[
B_R = \frac{\text{number of blocking events}}{\text{number of requests}}
\]

With the growth of \(K_{\text{MAX}} \), the \(B_R \) saturates. Thus, if \(K_{\text{MAX}} \) is in the saturation region, the results don't enhance the frequency of the blocking events and results are good.

RESULTS

- We used the 17-nodes and 26-link German backbone network
- \(CM = N (1 - I_{17}) \), \(N=2, 3, 4, 5 \)
- \(\alpha = 95\%, 99\% \) and \(100\% \)

K-MAX ESTIMATION

The CDFs and \(K_{\text{MAX}} \) are computed.

\(K_{\text{MAX}} \) results to be:

- \(1 \) (95%), \(2 \) (99%), \(3 \) (100%) for \(N=2 \)
- \(4 \) (95%), \(8 \) (99%), \(25-40 \) (100%) for \(N=3 \)
- \(6 \) (95%), \(18-25 \) (99%), \(37-45 \) (100%) for \(N=4,5 \)

TEST OF RESULTS

The SNAP is used to validate the results. It is run with the \(CM \) matrices and several values of \(K_{\text{MAX}} \).

It can be observed that for:
- \(N=2,3 \): 99% and 100% are more confident
- \(N=4,5 \): all the percentiles provide reliable results

CONCLUSION

- A finer analysis based on randomly generated networks to refine \(\alpha \) and find the better priority principle
- Using the algorithm to study the variation of \(K_{\text{MAX}} \) in function of the network parameters

BIBLIOGRAPHY