

B5 Special Session Photonics for 5G

Dimensioning the Physical Layer of DSP-Based Radio Waveforms Aggregation for Fronthauling

Mengesha Befekadu Debebe and Roberto Gaudino

Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino, Torino, Italy

e-mail: roberto.gaudino@polito.it

Stefano Straullu and Silvio Abrate

Istituto Superiore Mario Boella Via P. C. Boggio 61, Toriono, Italy

e-mail: abrate@ismb.it

Acknowledgments

This work was supported by Cisco University Research Program Fund, a corporate advised fund of Silicon Valley Community Foundation. URP project acronym:

5G-PON

The authors would like to thank <u>Fabrizio Forghieri, Cisco Photonics</u>, for his invaluable support for this research.

Introduction

The three main optical fronthauling trends (in "chronological" order):

- "Digitized radio over fiber" D.RoF using CPRI or OBSAI "de facto" standards
- ▶ The <u>DSP-Based Channel Aggregation</u> approach
 - ▶ Introduced in ITU-T G.RoF in 2015
 - ▶ Focus of our presentation today

Series G

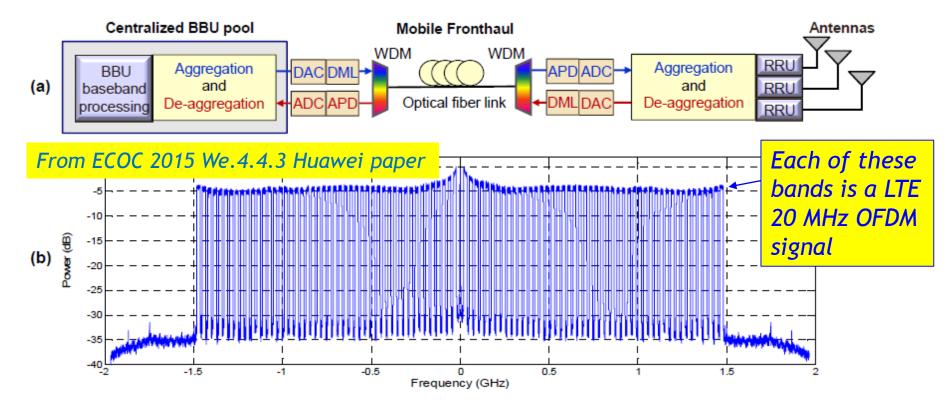
Supplement 55 (07/2015)

Radio-over-fiber (RoF) technologies and their applications

An even more recent trend: <u>Next Generation</u>
<u>Fronthaul Interface (NGFI)</u>

Outline of our talk

- A super-quick review of the DSP-Based Channel Aggregation approach
- Dimensioning the Error Vector Magnitude (EVM) for the front-hauling part
- Our experimental optimization of the system parameters
- Discussion and conclusion


A SUPER-QUICK REVIEW OF THE DSP-BASED CHANNEL AGGREGATION APPROACH

One of the proposed architecture

- An "hybrid" DSP-assisted Radio over fiber
- The key idea is an analog transport of many LTE carrier waveforms using "analog" Frequency Division Multiplexing

Fig. 1: (a) Schematic of the mobile fronthaul architecture with DSP-based channel aggregation and de-aggregation in the frequency domain; (b) Experimentally measured spectrum of 48 20-MHz LTE signals (and their images due to Hermitian symmetry) that are aggregated using seamless channel mapping and transmitted over 5-km SSMF with -6 dBm received signal power. The signal center wavelength is 1550 nm. DML: directly modulated laser; APD: avalanche photodiode.

The required DSP

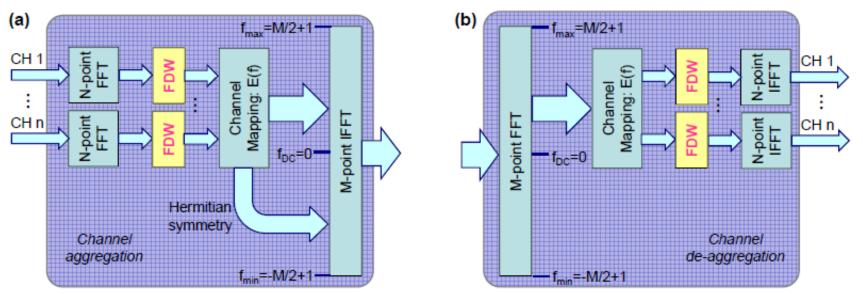
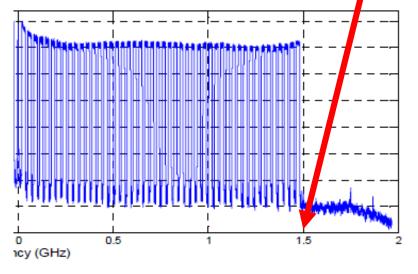


Fig. 2: Schematic of the DSP blocks for FFT/IFFT-based channel aggregation (a) and de-aggregation (b), both with the use of frequency-domain windowing (FDW) to reduce the DSP processing latency.

Key idea: generate the FDM aggregated signal taking advantage of FFT processing for both aggregation and de-aggregation



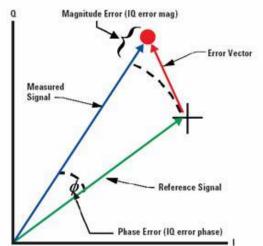
Comparison of CPRI and G.RoF

In the Huawei ECOC2015 experiment, they demonstrated this approach using 48 LTE signals over approx. 1.5 GHz

of electrical analog bandwidth

- The CPRI approach would have required approximately 48x1.23Gbit/s ≈ 60 Gbit/s
- ▶ This is the clear advantage of this new proposal

DIMENSIONING THE ERROR VECTOR MAGNITUDE (EVM) FOR THE FRONT-HAULING PART


Error Vector Magnitude from ETSI

The LTE-A international standard ETSI Technical Specification 136 104 V12.6.0 (2015-02) determines the physical layer transmission quality using the (rms) Error Vector Magnitude parameter

▶ The ETSI requirements are:

Modulation format	Max EVM _{RMS}
256-OAM	3.5%
64-QAM	8%
16-QAM	12,5%
QPSK	17,5%

$$EVM = \sqrt{\frac{\sum_{k=1}^{M} |Z(k) - R(k)|^{2}}{\sum_{k=1}^{M} |R(k)|^{2}}}$$

EVM on optical link

- Several papers on DSP-aggregated fronthauling dimension the optical link using the same values
 - ▶ For instance, they specify the system "sensitivity" for 64-QAM as the point giving EVM=8% after the optical receiver
- We believe this is largely optimistic: one CANNOT attribute the "EVM budget" completely to the optical part
 - Actually, the opposite would be true, i.e., most of the EVM budget should remain for the wireless part
 - The optical fronthauling segment should be as "transparent" as possible to the wireless segment

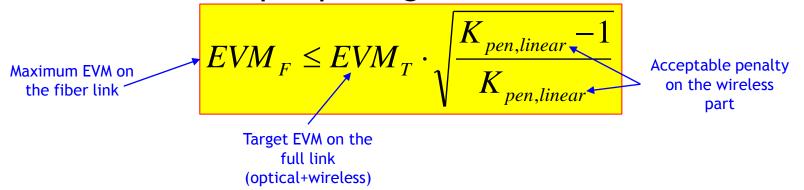
EVM on optical link

Considering that in the proposed approach (and focusing on the downstream) the optical and wireless segment are "analogically" cascaded, we have that

$$SNR_{TOT} = \frac{1}{SNR_F^{-1} + SNR_W^{-1}} \Longrightarrow EVM_{TOT} = \sqrt{EVM_F^2 + EVM_W^2}$$

$$SNR = \frac{E_s}{N_0} = \frac{1}{EVM_{RMS}^2}$$

We now assume that the "power penalty" on the wireless segment due to the fronthauling segment cannot be larger than a given quantity in dB


$$SNR_{W,dB} = SNR_{T,dB} - K_{pen,dB}$$

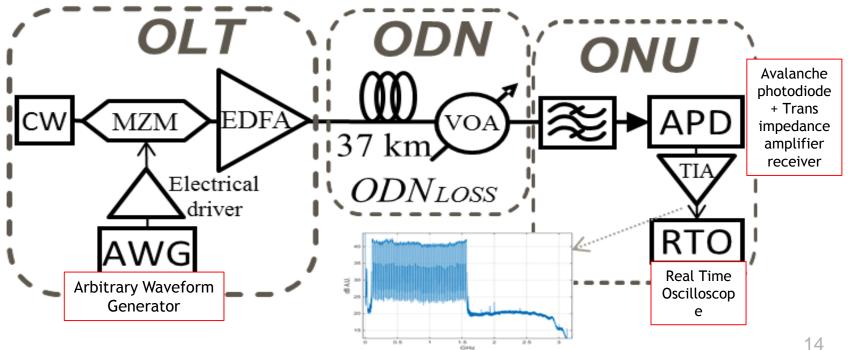
EVM on optical link



After some simple passages:

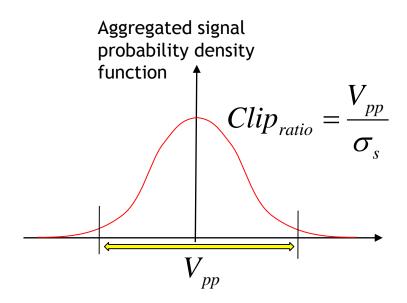
1 dB penalty on wireless part

Modulation format	Max EVM _F
256-OAM	1.58%
64-QAM	3,62%
16-QAM	5,66%
QPSK	7,93%



OUR EXPERIMENTAL OPTIMIZATION OF THE SYSTEM PARAMETERS

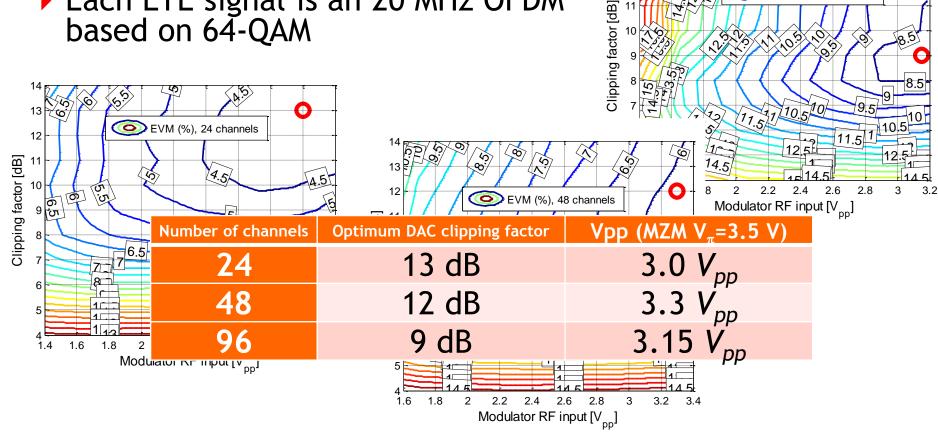
Experimental Setup: off-line processing experiment for downstream fronthauling transmission


TX parameters to be optimized

Clipping on the signal sent to the DAC

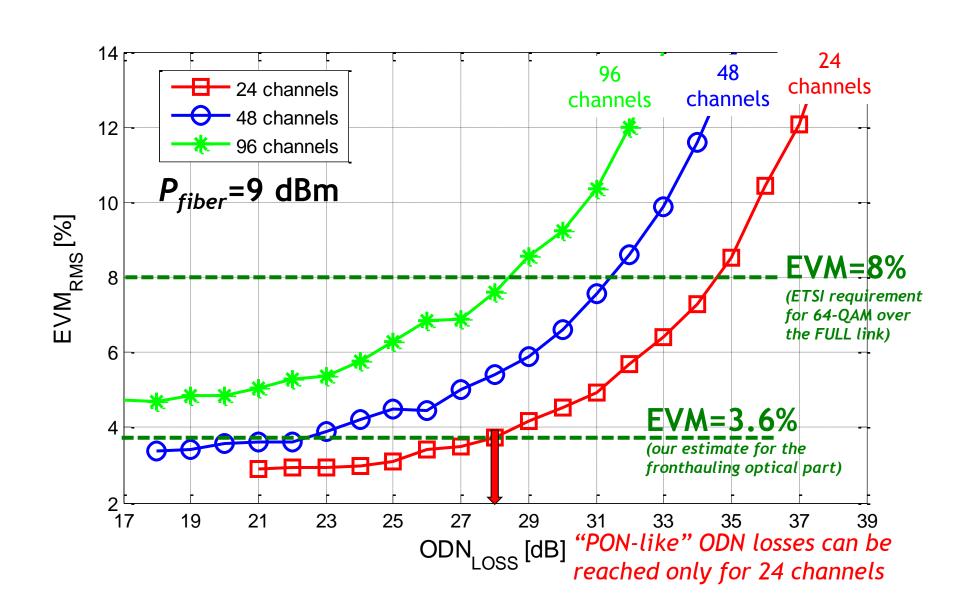
Peak-to-peak voltage at the input of the external modulator

 \blacktriangleright Transmitted power at the input of the fiber P_{fiber}

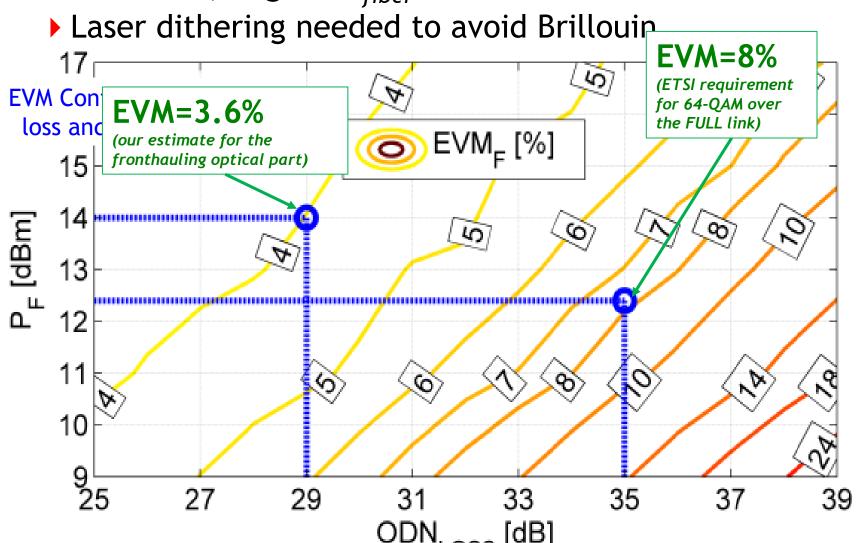


Optimization of clipping and V_{pp}

EVM (%), 96 channels


- We DSP-aggregated 24, 48 and 96 LTE signals
- ▶ Each LTE signal is an 20 MHz OFDM based on 64-QAM

EVM vs. ODN loss



Increasing P_{fiber}

 \blacktriangleright 48 channels, Higher P_{fiber}

CONCLUSION

Dimensioning the Physical Layer of DSP-Based Radio Waveforms Aggregation for Fronthauling

Mengesha Befekadu Debebe and Roberto Gaudino

Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino, Torino, Italy

e-mail: roberto.gaudino@polito.it

Stefano Straullu and Silvio Abrate

Istituto Superiore Mario Boella Via P. C. Boggio 61, Toriono, Italy e-mail: abrate@ismb.it

Conclusion

- ▶ After a careful optimization of system parameters we manage to obtain EVM<4% for 48 LTE channels using manageable transmitted optical power
 - P_{fiber}≈14 dBm
 - Consider that some CATV video-overly systems launches up to 17 dBm
- We are currently working on finding solutions that allows 96 channel transmission by:
 - Work on some (simple) nonlinearity compensation at the receiver
 - investigate other modulation formats

QUESTIONS?

Dimensioning the Physical Layer of DSP-Based Radio Waveforms Aggregation for Fronthauling

Mengesha Befekadu Debebe and Roberto Gaudino

Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino, Torino, Italy

e-mail: roberto.gaudino@polito.it

Stefano Straullu and Silvio Abrate

Via P. C. Boggio 61, Toriono, Italy

e-mail: abrate@ismb.it

OPTCOM - Dipartimento di Elettronica Politecnico di Torino - Torino - Italy

