

Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence

<u>Roberto Gaudino</u>, Vittorio Curri Politecnico di Torino, Italy

Stefano Capriata Telecom Italia, Italy

OFC presentation, 2014 March 10th

- The scenario: NGPON2 with full-backward compatibility with previous standard (GPON, XGPON and RF-Video)
- Impairments on GPON due to the Raman depletion induced by TWDM-PON
- Interplay between Raman and Polarization effects
- System design rules for full coexistence

The scenario

OPTCOM - DET - Politecnico di Torino - Torino - Italy www.optcom.polito.it

Full coexistence scenario

TELECOM

TWDM-PON wavelength allocation for the downstream

- 4-8 wavelengths around 1600 nm
- Approximately 110 nm distance from GPON at 1490 nm
- The problem: the spectral distance is very close to the maximum efficiency of Raman crosstalk
 - Strong TWDM-PON signals can deplete GPON signal in the downstream due to RAMAN nonlinearity by A_{GPON} dB

- We showed in a previous paper that this problem sets a maximum Tx power level for TWDM-PON signals
 - This is also under investigation in FSAN

The Raman effect in NG-PON2

Quick summary on our previous results

Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON

R. Gaudino⁽¹⁾, V. Curri⁽¹⁾, S. Capriata⁽²⁾

 A_{GPON} vs. P_{TWDM}

💕 OPTCOM

- By re-using the Raman equations that were developed to study distributed Raman amplifiers, the problem can be easily studied analytically
- Our previous results assumed a complete polarization averaging along the fiber link
- This paper extends the treatment considering also polarization-related effects

OPTCOM

GPON Raman-induced depletion and its interplay with polarization effects induced by PMD

Raman and polarization states

- We focus <u>ONLY on the impact of TWDM-PON over</u> <u>GPON depletion and ONLY on the downstream</u>
- The involved signals relative polarizations states evolve along the fiber in a random way, depending on transmitter polarizations and on fiber PMD
- Also this effect was studied in the past for Raman amplifiers
 - In our scenario, we can re-use the same equations, specializing them to TWDM-PON and GPON interaction

PTCOM

"Polarization averaged case"

Using a simple "polarization averaged" analysis, the TWDM-PON Raman depletion on GPON is estimated as:

OPTCOM

Best case PTCOM

On the contrary, for the other "zero probability" event in which all TWDM-PON signals are polarization aligned, and the GPON is orthogonal (again over all the fiber span), the Raman depletion for GPON would be almost zero

Realistic case

OPTCOM

Considering PMD-related polarization effect, A_{GPON} is thus a random variable with a certain probability density function (PDF)

> A very similar situation was studied in details for distributed Raman amplifiers, see for instance:

E. S. Son, Lee, J.H.; Chung, Y.C., "Statistics of Polarization-Dependent Gain in Fiber Raman Amplifier," JLT 23, 1219-1226 (2005) (I will call it "Chung's paper" in the following)

It was demonstrated (in Chung's paper) that L_{pol} is a random process assuming values in $|-L_{eff}, L_{eff}|$ having a truncated zero-mean Gaussian shape, with known variance depending only on PMD and fiber length

TWDM channels DOP_{TX}

- In a real system, the TWDM channel states of polarization will also be random
- We found its DOP_{TX} probability density function
- It depends ONLY on the number of channels (4 or 8)

PTCOM

Out-of-Service effect on GPON

If the maximum margin (L_{marg}) on GPON power budget is smaller than $A_{GPON,WC}$, there exists a probability P_{outage} that the systems goes out-of-service.

OPTCOM

Numerical results

OPTCOM

Parameters for the results in the following slides:

Maximum acceptable P_{TWDM}

Conclusion

- Raman depletion sets a maximum value for the TDWM channels TX power
 - For PMD significantly smaller than 0.1 ps/sqrt(Km) a further decrease in maximum power should be accepted in order to have a low out of service probability
 - For very low PMD around 0.01 ps/sqrt(Km) this give around 2 dB decrease in acceptable TDWM power for out of service equal to 10⁻⁵

Thank you for your attention!

Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence

<u>Roberto Gaudino</u>, Vittorio Curri Politecnico di Torino, Italy

Stefano Capriata Telecom Italia, Italy

OFC presentation, 2014 March 10th

