

Extended TWDM-PON demonstration up to 100 km and 35 dB ODN loss on Burst-Mode Coherent Reflective PON

²Politecnico di Torino, Torino, Italy

³CISCO Photonics, Monza, Italy

OFC 2014 – San Francisco – California (USA) 11/03/2014

STITUTO SUPERIORE MARIO BOELLA

Acknowledgments

- This work was supported by CISCO Systems within an SRA contract
- and partially by the Italian Ministry of University and Research through ROAD-NGN project (PRIN2010-2011)
- The authors would like to thank Fastweb for allowing access to their Turin dark fiber metro network

Stefano Straullu Researcher PhotonLab +39 011 2276 314 straullu@ismb.it

www.ismb.it

11 111 11

FSAN TWDM-PON architecture

Defined by FSAN and ITU-T in the Recommendation G.989.1
"40-Gigabit-capable passive optical networks (NG-PON2)"

http://www.itu.int/rec/T-REC-G.989.1-201303-I/en

FSAN TWDM-PON architecture

- 4 wavelengths per direction, 100 GHz spacing
 - Upgradeable to 8 wavelengths (50 GHz)
- **TDMA** on each of the 4 wavelengths
 - Each wavelength is treated as an independent XG-PON
- Splitter-based PON

- **No AWG** and amplification in the ODN
- Backward compatibility with ODN loss classes

		Nominal 1 (N1 class)	Nominal 2 (N2 class)	Extended 1 (E1 class)	Extended 2 (E2 class)
DOPL {	Minimum loss	14 dB	16 dB	18 dB	20 dB
	Maximum loss	29 dB	31 dB	33 dB	35 dB

Differential Optical Path Loss = Maximum loss – Minimum loss

Can reflective PON be applied in such scenario?

- TWDM-PONs need for ultra-low cost tunable lasers at the ONU side
- Several WDM reflective PON architectures have been proposed in the last ten years, but:
 - AWG inside the ODN
 - poor receiver **sensitivity**
 - **dedicated wavelength** per ONU

The results of our work

 In our last work, we demonstrated a reflective PON architecture which solves all the previous points, allowing high-ODN loss, splitter-based ODN and TDMA

 The goal of this new work is to demonstrate a complete compatibility with the main characteristics of ITU-T G.989.1 (class E2, distance DD40)

System setup

BURST-MODE TX: new structure for the ONU

System setup: upstream transmission

The DOPL issue

- The **Differential Optical Path Loss** in a reflective PON architecture **counts twice** in terms of optical power at the OLT receiver input
- In a TDMA situation, the received packets can have a power variation of twice the DOPL (in dB)
- Since the ITU-T specifies the DOPL up to 15 dB, this would mean a completely unacceptable RX power variation among TDMA packets of up to 30 dB, which would put any coherent receiver out of service
- Therefore, we propose to implement an OLT-centralized automatic control algorithm on the ONUs SOA gain, whose target is to equalize the received optical power at OLT

System measurement

Experimental results: 37 km, single wavelength

Experimental results: 100 km, single wavelength

Experimental results: 100 km, 4 wavelengths

Conclusions

- We demonstrated that our TWDM-PON upstream architecture supports:
 - 35 dB of ODN loss
 - more than 15 dB of DOPL
 - **37 km** of SMF (showing potential extension up to **100 km**)
- This was possible thanks to:
 - the **reflective**, **burst-mode ONU** (no tunable lasers)
 - the coherent burst-mode detection at the OLT
- We hope that this paper can contribute to future PON generations, particularly if **DWDM** with significantly more than 4 wavelengths on a 50 GHz grid will be adopted, which would make **tunable lasers** at ONU even more critical

Back-up slides

BURST-MODE RX: coherent burst-mode detection

• LMS (training)

The first <u>127 bits</u> in each bursts are used for **synch** and for an LMS equalizer algorithm in **training** mode

LMS (tracking)

After the first 127 bits, the LMS algorithm is switched to **"decision directed"** to elaborate the **payload** of the burst

Experiments used an off-line processing approach

To obtain stable BER values, we estimate and average it over a large number of packets (approx. 1800 packets for each BER estimation)

SOA saturation

- If excess loss is low the SOA is driven into saturation by the modulated signal and this induces patterning
- If loss is high the carrier saturates the SOA, acts as a "CW holding beam" which speeds up gain recovery
 Low Excess loss

[ref] E. K. MacHale et al., "Extended-Reach PON employing 10Gb/s Integrated Reflective EAM-SOA," ECOC) Brussels, Belgium, 2008, Paper Th.2.F.1