10 GBT/S 2-PSK TRANSMISSION AND HOMODYNE COHERENT DETECTION USING COMMERCIAL OPTICAL COMPONENTS

Stefano Camatel, Valter Ferrero, Roberto Gaudino, Pierluigi Poggiolini - Politecnico di Torino
Paolo Bravetti, Giuliani Coli - Corning-OTI (now Avanex)

A.P.S.Khanna - Agilent Technologies

Coherent detection: potential field of application:
- Multilevel optical phase modulation (N-PSK)
- Dispersion compensation in the electrical domain
- Ultra-dense WDM
- Fastly reconfigurable optical networks
- Optical sensor, microwave photonics, etc.

Targets of this work:
- We introduce a novel technique to implement an optical homodyne PLL using only off-the-shelf optical components
- We demonstrate its feasibility on a 10 Gbit/s PSK experiment
 - We show that the RX sensitivity is significantly better than conventional IM-DD

System schematic

The Sub-Carrier OPLL (SC-OPLL) is our novel OPLL setup. It is the key element of the proposed coherent system.

Photodiode Input
- modulated PSK signal

Photodiode Output
- electrical low-pass filter

Sub Carrier Optical PLL (SC-OPLL)

Two main Sub Carriers at frequency f_{SC} are generated. We are able to tune both by simply changing the voltage applied to the electrical VCO, thus implementing an Optical VCO. f_{SC} is set in order to obtain the received signal frequency f_{RX}.

Optical VCO

The amplitude modulator is a high bandwidth Corning-OTI LiNbO$_3$ Mach-Zehnder (MZ) and is biased at a null of its transfer function, a sinusoidal carrier-suppressed modulation is obtained.

The electrical VCO is a low jitter silicon-bipolar based 20 GHz VCO from Agilent Technologies.

Experimental Results

All the SC-OPLL components are commercially available today

We demonstrated its feasibility on a 10 Gbit/s PSK experiment
- RX sensitivity is 4 dB better than conventional IM-DD

Conclusions

Acknowledgements

For any further information, please contact us:
- Stefano Camatel – stefano.camatel@polito.it
- Valter Ferrero – valter.ferrero@polito.it
- Roberto Gaudino – roberto.gaudino@polito.it

www.optcom.polito.it