Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity

Gabriella Bosco, Dario Pilori, Pierluigi Poggiolini,
Andrea Carena, Fernando Guiomar

Politecnico di Torino – Dipartimento di Elettronica e Telecomunicazioni
Introduction

- **Huge bandwidth and capacity demand increase**
 - driven by video streaming, cloud computing, social media and mobile applications

- **Need to increase the transmission rate of currently deployed systems**
 - 32-Gbaud PM-QPSK \rightarrow 128 Gb/s per channel
 - 32-Gbaud PM-16QAM \rightarrow 256 Gb/s per channel

Global IP Traffic by Devices

Source: “The Zettabyte Era - Trends and Analysis”, Cisco, Jun 2016

Raw bit-rate

$$R_b = R_s \cdot n_{bps}$$

- **Symbol rate**
- **Number of bits per symbol**

25% CAGR 2015–2020
Goal: to scale the per-channel bit rate to 400 Gb/s and beyond

Two options:
- Increase n_{bps} → high-order formats → Trade-off between spectral efficiency and reach
- Increase R_s → Impact of symbol-rate on system reach

Raw bit-rate

$$R_b = R_s \cdot n_{bps}$$

Net bit-rate

$$R_b = R_s \cdot n_{bps} \cdot r$$

FEC with 20% over-head ($r = 0.833$)
Outline

- Introduction
- Nyquist-WDM
- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Introduction

Nyquist-WDM

- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Nyquist-WDM

- Maximum information that can be transmitted by the WDM comb: SE x available bandwidth

![Diagram of Nyquist-WDM](image)

Raw spectral efficiency

\[SE = n_{bps} \cdot \frac{R_s}{\Delta f} \]
Generation of a Nyquist-WDM signal

- $R_s = \frac{f_{DAC}}{N_{SpS}}$
 - DAC sampling speed (samp/s)
 - Number of samples per symbol

- R_s can be increased by reducing the “oversampling factor” N_{SpS} → interference between spectral replica → need to use a proper anti-alias filter

A. Nespola et al., “1306-km 20x124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b·km)/s/Hz using 1.15 samp/symb DAC,” *Opt. Exp.* (22), 2014.
Nyquist pulse shaping is performed in the digital domain using FIR filters with a roll-off of 0.1.
Nyquist pulse shaping is performed in the digital domain using FIR filters.
Nyquist pulse shaping is performed in the digital domain using FIR filters
Nyquist pulse shaping is performed in the digital domain using FIR filters.

Trade-off between complexity and achievable spectral efficiency.
Outline

- Introduction
- Nyquist-WDM
- **Trade-offs between spectral efficiency and reach**
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Trade-offs between spectral efficiency and reach

Net spectral efficiency

\[SE = n_{\text{bps}} \cdot \frac{R_s}{\Delta f} \cdot r \]

- If \(n_{\text{bps}} \) increases, SE increases but the back-to-back performance gets worse \(\rightarrow \) reduction in reach

Analysed setup:
- Nyquist-WDM transmission at \(R_s = 32 \) Gbaud, with spacing \(\Delta f = 1.05 \) \(R_s \) (roll-off 0.05)
- Bandwidth of the WDM comb: 5 THz
- EDFA only amplification with \(F = 5 \) dB
- PSCF or SSMF with 100-km span length
- SNR margin of 3 dB w.r.t. the ideal back-to-back performance
SE vs. total link length (100-km span length)

<table>
<thead>
<tr>
<th>Link</th>
<th>Fiber type</th>
<th>Dispersion [ps/nm/km]</th>
<th>Loss [dB/km]</th>
<th>Non-linearity coeff. [W^{-1}km^{-1}]</th>
<th>Span length [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link 1</td>
<td>SSMF</td>
<td>16.7</td>
<td>0.2</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>Link 2</td>
<td>PSCF</td>
<td>20.5</td>
<td>0.165</td>
<td>0.75</td>
<td>100</td>
</tr>
</tbody>
</table>

- Distance between operating point and asymptotic performance → FEC overhead
- Complexity increases with modulation format order and FEC overhead
Outline

- Introduction
- Nyquist-WDM
- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Over the last few years, various simulative and theoretical papers have presented evidence of a **dependence of system performance on the transmission symbol rate**:

- C. Behrens et al., ‘Nonlinear transmission performance of higher-order modulation formats,’ PTL (23), Mar. 2011.
- M. Qiu et al., “Subcarrier multiplexing using DACs for fiber nonlinearity mitigation in coherent optical communication systems,” OFC 2014, paper Tu3J.2.
- N. Rossi, P. Serena, A. Bononi, ‘Symbol-rate dependence of dominant nonlinearity and reach in coherent WDM links, JLT (33), Jul. 2015.

What is the symbol rate which minimizes the non-linear interference (NLI) ?
The analyzed set-up

- **What is the symbol rate which minimizes NLI?**

 ...having fixed:
 - the total WDM bandwidth \(B_{\text{WDM}} = 504 \text{ GHz}, 1.5 \text{ THz}, 2.5 \text{ THz}, 5 \text{ THz} \)
 - the modulation format and roll-off (PM-QPSK, \(\rho = 0.05 \))
 - the relative frequency spacing \(\Delta f = 1.05 R_s \)

- SSMF fiber (100-km span length)
 - EDFA-only amplification (\(F = 5 \text{ dB} \))
The total NLI power (P_{NLI}) at the output of the transmission link is estimated either with the EGN model [*] or by numerical simulations based on the split-step Fourier method.

Systems at different symbol rate are compared in terms of the normalized NLI power spectral density (PSD)

$$\tilde{G}_{\text{NLI}} = \frac{P_{\text{NLI}}}{R_s G_{\text{ch}}^3}$$

which is independent of the transmitted power per channel.

Same value of \tilde{G}_{NLI} means same maximum reach.

Normalized G_{NL} – PM-QPSK over SMF

- Solid lines: EGN model

Solid lines: EGN model
Markers: numerical simulations

Maximum reach gain:

\[(\Delta MR)_{dB} \approx \frac{1}{3}(\Delta \tilde{G}_{NLi})_{dB} \]

\~ 0.6 dB or 15%

How to exploit symbol-rate optimization gain?

- Optimum symbol rate values in the range 2-4 Gbaud
- It would be extremely inefficient to use a separate transceiver for each low-symbol-rate signal
 - To reach the transmission speed of commercially available 32-Gbaud systems, 16× more transceivers (including laser sources) at 2 Gbaud would be required

Sub-carrier multiplexing

- A high symbol-rate signal is electrically decomposed into a given number of subcarriers, each of which operating at a lower symbol-rate (multiplexing in the digital domain)
Outline

- Introduction
- Nyquist-WDM
- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Subcarrier multiplexing

The experiment

- We started out with a **19 channel** WDM comb, with channel **spacing 37.5 GHz**, for a total WDM bandwidth of **710 GHz**

- We then sent each channel as either:
 - single-carrier at 32 GBaud
 - 8 subcarriers at 4 GBaud
 - 16 subcarriers at 2 GBaud

 Note that the spectral occupancy did not change
• The 8-subcarrier DAC-generated *electrical* spectrum for one channel
DN_MZM: double-nested Mach-Zehnder mod.

GEQ: Gain EQualizing programmable filter
PS: synchronous Polarization Scrambler
AOM: Acousto-Optic Modulator (used as switch)
TOF: Tunable Optical Filter
The Rx DSP

- The 8x8 (real) LMS is necessary to correct for I/Q delay skew at the transmitter modulator (otherwise 4x4 is enough)
To perform a meaningful comparative test over the long-haul, it is important that the btb is the same.

At the reference BER=10^-2:
- No penalty from single SC to 8 SCs
- 0.1-dB penalty from single SC to 16 SCs
Reach curves at BER 10^{-2}

- **16 subcarriers**
- **8 subcarriers**

14180 km

12620 km

12.4 % reach increase

- markers: experiment
- solid lines: EGN model predictions

Launched Power per subcarrier [dBm]

Number of spans
Pros and cons of SCM transmission

PROS

- Exploitation of the nonlinear propagation benefits associated with SRO (symbol rate optimization)
- Increase of system flexibility, by adjusting the number of subcarriers, modulation formats and spectral occupation to the current load of the network.

CONS

- Higher sensitivity to transceiver impairments (like IQ-skew) and phase noise → requires more complex DSP algorithms
Outline

- Introduction
- Nyquist-WDM
- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
- Shaping reduces the maximum achievable mutual information (or, equivalently, transmit rate), represented by the MI floor for high values of SNR.

- This value corresponds to the constellation entropy:

\[H(C) = - \sum_i p(a_i) \log_2 p(a_i) \]

- For low values of SNR, PS constellations perform slightly better than uniform 64-QAM.
- PS-64QAM with the same entropy as the uniform 16-QAM constellation
- PSCF fiber (108-km span length)
- 11 WDM channels at 32 Gbaud (frequency spacing = 50 GHz)
- The maximum reach gain at the same mutual information is 13.75%, which corresponds approximately to the SNR gain in back-to-back.
Pros & Cons

PROS
- Enhanced system reach
- High flexibility of the transponder (transmission speed can be tuned by changing the shaping of the constellation)

CONS
- The highest SNR gains of probabilistic shaping are achieved for low values of MI, which corresponds to very high pre-FEC Symbol Error Rates (SERs)
- High values of SER represent a big challenge for blind DSP algorithms, such as adaptive equalizer and phase recovery.

Outline

- Introduction
- Nyquist-WDM
- Trade-offs between spectral efficiency and reach
- Impact of symbol-rate on system reach
- Subcarrier multiplexing
- Probabilistic shaping
- Conclusions
Two main strategies to increase the transmission speed:
- Increase the order of the modulation format
 → SNR penalty, increase of DSP complexity
- Increase the symbol rate

There is an optimum value of symbol-rate that minimizes the impact of nonlinearities (around 2-4 Gbaud) → subcarrier modulation
- more impacted by transceiver impairments (like IQ-skew) and phase noise
- requires more complex DSP algorithms
- increases flexibility

Other ways to increase flexibility
- Constellation shaping
- Hybrid formats