Performance and Complexity Comparison of Carrier Phase Estimation Algorithms for DP-64-QAM Optical Signals

S. M. Bilal^{1,2}, K. P. Zhong², J. Cheng^{2,3}, Alan Pak Tao Lau², G. Bosco¹, C. Lu² ¹Politecnico di Torino, DET, Corso Duca Degli Abruzzi 24, Torino, Italy, <u>syed.bilal@polito.it</u> ²Photonics Research Center, The Hong Kong Polytechnic University, Hong Kong, China ³Huazhong University of Science and Technology, Wuhan, China

Abstract - A detailed simulative and experimental analysis of different CPE schemes for 64-QAM systems is presented. The best compromise between linewidth tolerance and complexity is achieved using a recently proposed multi-stage architecture, based on a modification of the standard V&V algorithm.

The performance of various CPE algorithms is compared:

QPSK Partitioned V&V
V&V+CT+MLE
V&V+CT+2MLE
Modified V&V (V&V*)
V&V*+CT+MLE
V&V*+CT+2MLE
BPS
BPS + MLE
S-DD-PLL
S-DD-PLL+ MLE
DA-MLE

Simulation model

Received noisy samples:

Phase noise:

- x_k is the data symbol at time k that belongs to the set $(\pm a \pm j \cdot b)$, with $a, b \in \{1, 3, 5, 7\}$.
- η_k is the AWG noise.
- θ_k is the laser phase noise, modeled as a Wiener process.
- Δv is the combined laser linewidth of transmitter laser and LO.
- T_s is the symbol period.

Simulation Results

Figure. 1: SNR vs. linewidth times symbol duration ($\Delta v \cdot T_s$) product at BER=10⁻² for different CPE schemes. (a) Algorithms having worst performance (b) Algorithms having best performance

Case	1	2	3	4	5	6	7	8	9	10	11
CPE	V&V	V&V*	V&V+CT+ MLE	V&V+CT+ 2MLE	V&V*+CT +MLE	V&V*+CT +2MLE	BPS	BPS+ MLE	S-DD- PLL	S-DD-PLL +MLE	DA- MLE
$\Delta_{v} \cdot T_{s} @$ 1dB penalty	8.0- 10 ⁻⁶	10 ⁻⁵	4.5·10 ⁻⁵	5.6·10 ⁻⁵	6.0·10 ⁻⁵	7.1.10 ⁻⁵	5.7. 10 ⁻⁵	5.4. 10 ⁻⁵	3.0·10 ⁻⁵	3.0·10 ⁻⁵	2.5. 10 ⁻⁵
Equivalent linewidth @ 20 Gbaud	0.16 MHz	0.20 MHz	0.90 MHz	1.12 MHz	1.20 MHz	1.42 MHz	1.14 MHz	1.08 MHz	0.60 MHz	0.60 MHz	0.50 MHz

Table. 1: Laser phase noise tolerances and their equivalent linewidths at 20 Gbaud for various CPE algorithms

Figure. 2: Experimental setup for 240Gb/s (20Gbaud) DP-64QAM back-to-back system.

> An external cavity laser (ECL) with a linewidth of 100 kHz and wavelength 1553.32 nm is modulated by an integrated IQ modulator, whose I and Q branches are driven by two 20-Gbaud 8-

level electrical signals in order to generate a 64-QAM signal QPSK Partitioned.

> The dual-polarization (DP) 64-QAM signal is generated by using a polarization multiplexing emulator.

➢ By loading different amounts of ASE noise, the optical-signal-to-noise-ratio (OSNR) values were varied between 25 and 37 dB.

> At the receiver side, an optical band pass filter (OBPF) with bandwidth 0.6nm is used for filtering the out-band noise.

➤ The received signal is coherently detected by an integrated coherent receiver with a local oscillator (ECL, with line-width 100 kHz).

- > The detected signal is sampled by a 50GS/s real-time sampling scope.
- > The captured data are processed offline.

Complexity analysis

CPE	Real Multipliers	Real Adders	Comparators	Look-Up Tables	Decisions
V&V	8N	3N+2	4N+2	1	N ₁
V&V+CT	$8N_1 + 6N_2$	$3N_1 + 3N_2 + 30$	4N ₁ +7	2	N ₂
V&V+CT+MLE	$8N_1 + 6N_2 + N_3$	$3N_1 + 3N_2 + N_3 + 29$	4N ₁ +7	3	2N ₃
V&V+CT+2MLE	$8N_1 + 6N_2 + N_3 + N_4$	$3N_1 + 3N_2 + N_3 + N_4 + 28$	4N ₁ +7	4	N ₃ +2N ₄
V&V*	8N	3N+2	4N+2	1	N ₁
V&V* + CT	8N ₁ +6N ₂	$3N_1 + 3N_2 + 30$	4N ₁ +7	2	N ₂
V&V*+CT+MLE	$8N_1 + 6N_2 + N_3$	$3N_1 + 3N_2 + N_3 + 29$	4N ₁ +7	3	2N ₃
V&V*+CT+2MLE	$8N_1 + 6N_2 + N_3 + N_4$	$3N_1 + 3N_2 + N_3 + N_4 + 28$	4N ₁ +7	4	N ₃ +2N ₄
BPS	NM+2NM	2NM-M+3	M+1	0	NM+N
BPS+MLE	$N_1M+2N_1M+N_2$	$2N_1M-M+N_2+2$	M+1	1	N_1M+N_2
S-DD-PLL	2N	2N	0	0	2N
S-DD-PLL+MLE	$2N_1 + N_2$	$2N_1 + N_2 - 1$	0	1	$N_1 + N_2$
DA-MLE	3N+1	3N-2	0	0	N+1

Table. 2: Computational complexity for various CPE algorithms

Experimental Results

Conclusions

A detailed simulative and experimental analysis of different CPE schemes for 64-

QAM systems is presented. The recently proposed multi-stage algorithm achieves the best performance for 64-QAM systems with reduced complexity with respect to the BPS algorithm.

