Performance and Complexity Comparison of CPE Algorithms for 256-QAM Optical Signals

Syed M. Bilal⁽¹⁾, <u>Gabriella Bosco⁽¹⁾</u> Jingchi Cheng^(2,3), Alan Pak Tao Lau⁽²⁾, Chao Lu⁽²⁾

(1) Politecnico di Torino, Italy
(2) The Hong Kong Polytechnic University, Hong Kong
(3) Huazhong University of Science and Technology, Wuhan, China

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

OFC 2015, paper W1E.6

Motivation

- Coherent detection enabled the use of <u>high-order modulation</u> <u>formats</u> in optical transmission systems to increase the perchannel bit rate and the aggregate WDM throughput
- High-order modulation formats are <u>less tolerant</u> to phase noise

Minimum angle between constellation points on the same ring

QPSK	8-PSK	16-QPSK	16-QAM	64-QAM	256-QAM
90°	45°	22.5°	36.9°	16.3°	7.6°

<u>More complex</u> carrier-phase estimation (CPE) algorithms are needed

Standard Viterbi&Viterbi algorithm

DI TORINO

DET Department of Electronics and Telecommunications

DET Department of Electronics and Telecommunications

16 QAM
16 QAM
16 QAM

 Only uses symbols that match a QPSK constellation

DET Department of Electronics and Telecommunications

16 QAM

Only uses symbols that match a QPSK constellation

50% of symbols are used

POLITECNICO DI TORINO DET Department of Electronics and Telecommunications

64 QAM

 Only uses symbols that match a QPSK constellation

DET Department of Electronics and Telecommunications

• 64 QAM

18.75% of symbols are used

 Only uses symbols that match a QPSK constellation

DET Department of Electronics and Telecommunications

 Only uses symbols that match a QPSK constellation

DET Department of Electronics and Telecommunications

4.7% of symbols are used

 Only 12 out of the 32 symbols lying at the vertices of squares are used.

DET Department of Electronics and Telecommunications

Modified V&V algorithm (V&V*)

- Green symbols lie at an angle of ± 4° from the QPSK constellation.
- If the averaging window is sufficiently long, this ±4° error is averaged out → the estimation of phase noise is only marginally affected by these errors.

7.8% of symbols are used

DET Department of Electronics and Telecommunications

Blind-phase search (BPS)

- Feed-forward approach, based on the following steps:
 - Rotation of received sample by *M* test carrier phase angles:

$$\varphi_b = \frac{m}{M} \cdot \frac{\pi}{2} \qquad m \in \{0, 1, \dots, M - 1\}$$

- Evaluation of the *M* squared distances to the closest constellation point
- Sum of distances of *N* consecutive symbols (to mitigate noise distortion)
- Identification of the optimum phase value by searching the minimum sum of distance values

T. Pfau et al., "Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations", JLT, vol. 27, no.8, pp.989-999, Apr.2009.

DET Department of Electronics and Telecommunications

Standard Decision-Directed Phase Locked Loop

 It updates the phase estimation using the error between the output of the equalizer and the corresponding decision.

Y. Gao et al., "Modulation-Format-Independent Carrier Phase Estimation for Square M-QAM Systems", JLT, vol. 25, no. 11, pp. 1073 1077, Jun. 2013.

POLITECNICO

DI TORINO

DET Department of Electronics and Telecommunications

Maximum Likelihood Estimation (MLE)

Y. Gao, et al., "Low-complexity two-stage carrier phase estimation for 16-QAM systems ... in Proc. OFC/NFOEC, Los Angeles, CA, USA, Mar. 2011, paper OMJ6.

Simulation set-up

- Channel model: AWGN + phase noise
- Signal samples at the output of the digital coherent receiver:

- θ_k is the laser phase noise, modeled as a Wiener process
- Δv combined laser linewidth of transmitter laser and LO

Single-stage algorithms

DET Department of Electronics and Telecommunications

Dual-stage algorithms

POLITECNICO

DET Department of Electronics and Telecommunications

OFC 2015 – Los Angeles – Paper W1E.6

 $=\frac{P_{Rx}}{N_0R_s}$

Complexity comparison

CPE	Real Multipliers	Real Adders	Comparators	Look-Up Tables	Decisions
V&V	8N	3N+2	4N+2	1	N ₁
V&V*	8N	3N+2	4N+2	1	N ₁
V&V*+MLE	8N ₁ +N ₂	$3N_1 + N_2 + 1$	4N ₁ +7	2	N ₂
BPS	NM+2NM	2NM-M+3	M+1	0	NM+N
BPS+MLE	N1M+2N1M+N2	$2N_1M-M+N_2+2$	M+1	1	N ₁ M+N ₂
S-DD-PLL	2N	2N	0	0	2N
S-DD-PLL+MLE	2N1+N2	$2N_1 + N_2 - 1$	0	1	N ₁ +N ₂

- BPS has the best performance but the highest complexity.
- It's complexity can be reduced by a factor of 2.5 using the BPS-MLE approach, without any loss in performance.

POLITECNICO DI TORINO The actual complexity is strongly dependent on the practical implementation.

DET Department of Electronics and Telecommunications

Conclusions

- A detailed simulative analysis of different CPE schemes for 256-QAM modulation has been performed.
- Differently from what previously found for 16-QAM and 64-QAM, the best performance for 256-QAM systems is achieved by using BPS algorithms, with the complexity of BPS+MLE being almost 2.5 times less than the complexity of BPS.

POLITECNICO

DI TORINO

DET Department of Electronics and Telecommunications

Thank you!

DET Department of Electronics and Telecommunications