

Impact of the Transmitter IQ-Skew in Multi-Subcarrier Coherent Optical Systems

<u>Gabriella Bosco⁽¹⁾, Syed M. Bilal⁽¹⁾, Antonino Nespola⁽²⁾,</u> Pierluigi Poggiolini⁽¹⁾, Fabrizio Forghieri⁽³⁾

(1) Politecnico di Torino – Dipartimento di Elettronica e Telecomunicazioni

(2) Istituto Superiore Mario Boella (ISMB)

(3) Cisco Photonics Italy

PTCOM

Background

- Multi-subcarrier systems have a potential advantage over singlesubcarrier ones due to a higher tolerance to non-linear propagation effects
 - W. Shieh, Y. Tang, IEEE Phot. J., Vol. 2, n. 3, p.276 (2010)
 - A. Bononi et al., ECOC 2013, paper Th.1.D.5, London (2013)
 - M. Qiu et al., OFC 2014, Tu3J.2, San Francisco (2014).
 - A. Nespola et al., ECOC 2015, Mo.3.6.3, Valencia (2015)

 This advantage can be significantly reduced by transceiver practical implementation issues.

Multi-Subcarrier Transmitter

SC = subcarrier

PTCOM

- N = number of SCs
- R_{sc} = symbol rate per SC

- Aggregate symbol rate:
 R_s = R_{sc}·N = 32 Gbaud
- A time delay between the I and Q components at the Tx side can strongly affect the performance in the multi-SC scenario

Multi-Subcarrier Receiver

- Adaptive equalizer update algorithms:
 - 2x2 LMS (complex values)
 - 4x4 LMS (real values)

OPTCOM

Single-SC case

SNR vs. IQ skew for LMS 2x2

- R_s = 32 Gbaud
- N = number of SCs
- Symbol length: N=1: 31.25 ps
 N=8: 250 ps
- The penalty increases with the number of SCs

SNR vs. IQ skew for LMS 4x4

- R_s = 32 Gbaud
- N = number of SCs
- In the multi-SC cases, almost no difference is observed w.r.t. LMS 2x2

Outer SCs are more distorted ...

Analysis of the problem

- POLITECNICO DI TORINO
- We focus on two symmetric SCs centered around frequencies $+f_n$ and $-f_n$, considering a single polarization for simplicity.

 s⁺(t) and s⁻(t) are the signals transmitted on the two SCs:

$$s^{+}(t) = [x_{I}^{+}(t) + jx_{Q}^{+}(t)]e^{+j2\pi f_{n}t}$$

$$s^{-}(t) = [x_{I}^{-}(t) + jx_{Q}^{-}(t)]e^{-j2\pi f_{n}t}$$

- No time delay is present between I and Q components of the signals s[±](t).
- After down-conversion and low-pass filtering, both signals are perfectly recovered, and no interference is generated between the two subcarriers.
- $s^+(t)$ and $s^-(t)$ are the signals transmitted on the two SCs:

$$s^{+}(t) = [x_{I}^{+}(t) + jx_{Q}^{+}(t)]e^{+j2\pi f_{n}t} \cdot e^{-j2\pi f_{n}t} = x_{I}^{+}(t) + jx_{Q}^{+}(t)$$

$$s^{-}(t) = [x_{I}^{-}(t) + jx_{Q}^{-}(t)]e^{-j2\pi f_{n}t} \cdot e^{+j2\pi f_{n}t} = x_{I}^{-}(t) + jx_{Q}^{-}(t)$$

Time skew effect on the "positive" SC

- A time skew equal to τ is present: $s^{\pm}(t) = s_I^{\pm}(t) + js_Q^{\pm}(t + \tau)$
- It can be shown that the real and imaginary part of the generated signal are a combination of the upper and lower subcarriers:

$$r_{I}^{+}(t) = \frac{1}{2}x_{I}^{+}(t) + \frac{1}{2}x_{I}^{+}(t+\tau)\cos(\varphi) - \frac{1}{2}x_{Q}^{+}(t+\tau)\sin(\varphi) + + \frac{1}{2}x_{I}^{-}(t) - \frac{1}{2}x_{I}^{-}(t+\tau)\cos(\varphi) - \frac{1}{2}x_{Q}^{-}(t+\tau)\sin(\varphi) \qquad \varphi = 2\pi f_{n}\tau r_{Q}^{+}(t) = \frac{1}{2}x_{Q}^{+}(t) + \frac{1}{2}x_{Q}^{+}(t+\tau)\cos(\varphi) + \frac{1}{2}x_{I}^{+}(t+\tau)\sin(\varphi) + - \frac{1}{2}x_{Q}^{-}(t) + \frac{1}{2}x_{Q}^{-}(t+\tau)\cos(\varphi) - \frac{1}{2}x_{I}^{-}(t+\tau)\sin(\varphi)$$

It can be shown that no interference is generated by the SCs centered at frequencies different from $\pm f_{p}$.

OFC 2016 – Anaheim – Paper W4A.5

Similar expressions are obtained when performing down-conversion of an amount equal to
$$+f_n$$
:

-5 -3 -2 -1 +1 +2 +3 +4 $+\frac{1}{2}x_{I}^{+}(t)-\frac{1}{2}x^{+}(t+\tau)\cos(\varphi)+\frac{1}{2}x_{Q}^{+}(t+\tau)\sin(\varphi)$ -10 $r_{Q}^{-}(t) = \frac{1}{2}x_{Q}^{-}(t) + \frac{1}{2}x_{Q}^{-}(t+\tau)\cos(\varphi) - \frac{1}{2}x_{I}^{-}(t+\tau)\sin(\varphi) +$ -15 $-\frac{1}{2}x_{Q}^{+}(t) + \frac{1}{2}x_{Q}^{+}(t+\tau)\cos(\varphi) + \frac{1}{2}x_{I}^{+}(t+\tau)\sin(\varphi)$ -20 -0.5 0.5 0 f/R

of an amount equal to
$$+f_n$$
:
 $\varphi = 2\pi f_n \tau$

0

Time skew effect on the "negative" SC

 $r_{I}^{-}(t) = \frac{1}{2}x_{I}^{-}(t) + \frac{1}{2}x_{I}^{-}(t+\tau)\cos(\varphi) + \frac{1}{2}x_{Q}^{-}(t+\tau)\sin(\varphi) + \frac{1}{2}x_{Q}^{-}(t+\tau)\cos(\varphi) + \frac{1}{2}x_{Q}^{-}(t+$

OFC 2016 – Anaheim – Paper W4A.5

8x8 butterfly equalizer

PTCOM

 Taking also polarization into account, an 8x8 equalizer, jointly processing two symetric sub-carriers, is able to recover the original signals.

SNR vs. IQ skew LMS 4x4/8x8

LMS 4x4 vs. LMS 8x8

-1 +1 +2 +3 +4

-2

4 -3

0

-5

-10

-15

- *τ* = 7.8 ps
- symbol time in each SC: 250 ps

Conclusions

<u>Multi-SC modulation</u> The impact of the delay between the I and Q components of an IQ-modulation is higher than in the single-SC scenario

Main source of penalty

Interference generated by the symmetric SC

<u>Countermeasure</u>
 8x8 real-value MIMO equalizer jointly processing a SC and its symmetric-frequency counterpart

Impact of the Transmitter IQ-Skew in Multi-Subcarrier Coherent Optical Systems

<u>Gabriella Bosco⁽¹⁾, Syed M. Bilal⁽¹⁾, Antonino Nespola⁽²⁾,</u> Pierluigi Poggiolini⁽¹⁾, Fabrizio Forghieri⁽³⁾

(1) Politecnico di Torino – Dipartimento di Elettronica e Telecomunicazioni

(2) Istituto Superiore Mario Boella (ISMB)

(3) Cisco Photonics Italy

PTCOM