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▪ Internet data traffic always increases

▪ More devices connected

▪ New bandwidth hungry services and applications

▪ Introduction of 5G will exacerbate the situation

▪ To face this continuous growth a promising solution 
to increase optical system capacity is to extend 
transmission band

▪ From C-band towards L-band and beyond

▪ Optical amplification beyond C-band is a challenge

▪ Doped fiber amplifiers

▪ SOA

▪ Raman amplifier
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BACKGROUND: TRAFFIC INCREASE



▪ Raman amplification can complete this challenge

▪ Availability of amplification in any bands

▪ Broadband amplification in multi-pump 
configuration

▪ Flexible and programmable gain by properly 
adjusting pump powers and frequencies
▪ Arbitrary gain profiles compensating for tilts and 

ripples in hybrid solution

▪ It allows to avoid Gain-Flattening Filters

▪ Lower noise figure than other amplification 
solutions because it is a distributed gain
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RAMAN AMPLIFICATION



▪ Reconfigurable optical networks allow and to 
dynamically adapt to traffic demand

▪ Network control plane must implement efficient 
resource allocation
▪ Physical layer awareness is fundamental for the 

evaluation of Quality of Transmission

▪ Network elements, as the optical amplifier, must 
be abstracted to allow fast reconfiguration
▪ Real-time models of Raman amplifiers are needed
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SCENARIO: DYNAMIC NETWORKS



1. Raman amplifiers and Machine Learning

2. Previous works

3. Load Aware Raman amplifier analysis

4. Load Aware Raman amplifier design

5. Conclusions
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OUTLINE
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1.

RAMAN AMPLIFIERS 

AND MACHINE LEARNING



7

THE RAMAN AMPLIFIER
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[1] J. Bromage, ‘Raman Amplification for Fiber Communications Systems’, 

Journal of Ligthwave Technology, vol. 22, no. 1, pp. 79-93, 2004.
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MACHINE LEARNING
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2.

PREVIOUS WORKS
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LS-SVR based RA design

Jing Chen et al 2018 J. Opt. 20 025702, https://doi.org/10.1088/2040-8986/aaa2a6
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ML-based RA design

D. Zibar, A. Ferrari, V. Curri and A. Carena, “Machine Learning-based Raman amplifier design”, 2019 Optical Fiber 

Communications Conference and Exhibition (OFC), 2019.

D. Zibar , A. M. Rosa Brusin, U. C. de Moura, F. Da Ros, V. Curri, and A. Carena “Inverse System Design Using Machine 

Learning: The Raman Amplifier Case," in Journal of Lightwave Technology, doi:10.1109/JLT.2019.2952179
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ML-based RA+EDFA design over C+L-band

M. Ionescu, "Machine Learning for Ultrawide Bandwidth Amplifier Configuration," 2019 21st International 

Conference on Transparent Optical Networks (ICTON), 2019, doi: 10.1109/ICTON.2019.8840453.
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ML-based RA design over S+C+L-band

X. Ye, A. Arnould, A. Ghazisaeidi, D. Le Gac and J. Renaudier, "Experimental Prediction and Design of Ultra-Wideband

Raman Amplifiers using Neural Networks," 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020.

GENERATIVE MODEL RESULTS

INVERSE MODEL DESIGN RESULTS
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ML-based RA design over S+C+L-band

U. C. De Moura et al., "Multi-band programmable gain Raman amplifier," in Journal of Lightwave Technology, doi: 

10.1109/JLT.2020.3033768.
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(c),(f): Predicted and 
target flat and tilted 
(on–off) gain profiles 
with respect to 
frequency
(i): Maximum error of 
gain prediction with 
respect to total 
bandwidth
(l): Root-mean-square-
error of gain prediction 
with respect to total 
bandwidth.



▪All these works presented in previous slide have a 
COMMON FACTOR: they assume at the input of the 
Raman Amplifier FULL LOAD condition 

▪ In dynamically reconfigurable networks, optical links 
operate with PARTIAL LOADS

▪Does this have an impact on the behaviour of the 
Raman amplifier?
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THE COMMON FACTOR
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EFFECT OF PARTIAL LOADS ON RA

∆G > 2 dB
0.5 dB < ∆G < 1.8 dB

∆G < 0.2 dB

Fixed pump powers and frequencies:
• 𝑓𝑝=[210.51  207.28  204.15  201.11  198.16] THz
• 𝑃𝑝=[246.7,237.7,194.2,192.7,168.8] mW
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3.

LOAD AWARE

RAMAN AMPLIFIER ANALYSIS
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MACHINE LEARNING FRAMEWORK
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Pump 
powers

Pump 
powers

Spectral
load

Raman 
gain 

profile

Raman 
gain 

profile

𝒙 𝒚 = 𝑓(𝒙) ෝ𝒚 𝒙 𝒚 = 𝑓(𝒙) ෝ𝒚

P1

PNp

W(1)

G(f1) 

G(f2) 

G(fNch)

P1

PNp

S1

SNch

W(1)

G(f1) 

G(f2) 

G(fNch) 

Load Unaware NN (LU-NN)



▪ C+L bands: 220 frequency slots of 50 GHz

▪ Partial load: each frequency slot can 
be ON or OFF

▪ In partial load scenario: 2220 possible 
combinations + pump powers 
arbitrariness
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SIMPLIFYING THE PROBLEM

▪ 10 adjacent frequency slots grouped 
together to form a sub-band

▪ Each sub-band is 500 GHz wide and 
can assume two states: ON or OFF

▪ Total of 22 sub-bands over the entire 
11 THz C+L-band

• 12 sub-bands in the L-band 

• 10 sub-bands in the C-band
TOO LARGE!

SOLUTION



▪ General data
▪ Five pumps

▪ Fixed pump frequencies 𝑓𝑝=[210.51  207.28  204.15  201.11  198.16] THz

▪ C+L band: 𝑓 ∈ [185,196] THz

▪ 22 sub-bands: 500 GHz each

▪ We generate 11000 different partial loads configurations

▪ To emulate all load conditions, we consider different classes (C, L and C+L) and 
sub-classes (number of sub-band ON) of elements with randomly selected sub-
band positions

▪ Using the numerical Raman solver included in GNpy we generate the 
corresponding gain and noise profiles
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DATASET GENERATION
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MACHINE LEARNING FRAMEWORK

Load Aware NN (LA-NN)
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▪ Training method: Random projection
▪ 1 hidden layers, 1980 neurons per layer, activation function: tanh
▪ Same approach can also be used to predict ASE noise profile generated by 

Raman amplifier

Load Unaware NN (LU-NN)
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TESTING PROCESS

𝑃1, 𝑃2, … , 𝑃𝑁𝑝
or

𝑃1, 𝑃2, … , 𝑃𝑁𝑝, 𝑆1, 𝑆2, … , 𝑆𝑁𝑠𝑏
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TESTING RESULTS: LU-NN vs LA-NN
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TESTING RESULTS: LU-NN vs LA-NN

Median ~ 0 dB
Box size < 0.14 dB
Whisker size < 0.39 dB

Box: 50% of cases

Whiskers: 90% of cases

A. M. Rosa Brusin, U. C. de Moura, V. Curri, D. Zibar and A. Carena, "Introducing Load Aware Neural Networks for 

Accurate Predictions of Raman Amplifiers," in Journal of Lightwave Technology, vol. 38, no. 23, pp. 6481-6491, 

Dec. 1, 2020, doi: 10.1109/JLT.2020.3014810.
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4.

LOAD AWARE

RAMAN AMPLIFIER DESIGN
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MACHINE LEARNING FRAMEWORK

Load Aware NN (LA-NN)

𝒙 𝒚 = 𝑓(𝒙) ෝ𝒚

▪ Training method: Levenberg-Marquardt
▪ 2 hidden layers, 40 neurons per layer, activation function: tanh
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TESTING PROCESS
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TESTING RESULTS: ARBITARY PROFILES
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TESTING RESULTS: FLAT PROFILES

▪ 1000 different partial loads
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TESTING RESULTS: FLAT PROFILES

▪ 1000 different partial loads
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5.

CONCLUSIONS



▪ For ultra-wide band transmission, Raman amplification is an 
enabler to deliver arbitrary gain profiles at any wavelengths

▪ Machine Learning based methods allow for fast and accurate 
Raman amplifier analysis and design

▪ Load awareness is fundamental for applications in dynamically 
reconfigurable networks
▪ Direct NN predicts gain and noise profile to be effectively used in 

network controller 

▪ Inverse NN predicts pump powers to design the required gain profile
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CONCLUSIONS
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Thank you for your attention!

andrea.carena@polito.it

Slides available at: https://www.optcom.polito.it/talks
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