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Non-Parametric: Canonical Histogram Method – HMNonNon--ParametricParametric:: Canonical Histogram MethodCanonical Histogram Method –– HMHM

NonNon--ParametricParametric

MLSEADC

2xay ⋅=

OFE 
(AGC)

r dx

Non-parametric Method

Determine detected bit pattern d

Associate observed quantized amplitude r 

Count observed amplitudes r for pattern d
into a histogram N(d, r)

Metrics for given d and r is ~ log N(d, r)
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E ye  a n d  A DC th re sh o l d s

Pros

Simple – just counting events

Robust – insensitive to model mismatch

Cons

Data collection time ~ ADC resolution

Number of counters ~ ADC resolution

Possibly more sensitive to error propagation?
(decision errors translate into metrics errors)

Canonical metrics
Metrics for given r is the logarithm of
the observed relative frequency value.
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Histogram  based channel model
No parameters are estimated. But a
full amplitude histogram needs to be
„measured“ for each bit pattern.

r
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Amplitude distribution and ADC thresholds

       
 

 

 

 

 

 

 

 

 

Model PDFs

Eye and mean values

         
 

 

 

 

 

 

 

Amplitude distribution and ADC thresholds

         
 

 

 

 

 

 

 

 

 

 

Model PDFs

Eye and mean values

yz =

Parametric: Square Root Method – SQRTParametricParametric: Square: Square Root MethodRoot Method –– SQRTSQRT

Parametric Method
Take square-root z of signal y
Determine detected bit pattern d

Determine mean z-amplitude m(d) for pattern d
Metrics for given d and z is ~ ( z - m(d) ) ²

MLSE√

ParametricParametric

ADC

2xay ⋅=

OFE 
(AGC)

r d

z: signal independent noise 
The sqrt‘ed electrical signal has
roughly Gaussian noise and roughly 
signal independent noise.

Euclidean metrics 
Metrics for given z is then the Euclidean
distance from the mean sqrt‘ed signal.

Pros

Simple – just one parameter per PDF

Fast – mean value can be estimated quickly

Robust – decision errors do not corrupt PDF shape

Cons
Model mismatch penalties are possible

DC coupling

x

y: signal dependent noise 
The electrical signal has more 
noise on ones than on zeros.

yy

Note: The square root operation can also
be applied implicitly by a non-uniform ADC,
or explicitly after the uniform ADC, the latter 
with minor performance degradation

y z

t

y z

t

Mean based channel model
Only the mean value for each bit pattern needs
to be estimated when signal independent noise 
is postulated (i.e. when the red PDFs are used)
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PDF vs PMF

Some problems are specific for a parametric approach. 
All can lead to „wrong metrics“. In short:

Model Mismatch

Possible Problems of Parametric EstimationPossiblePossible Problems ofProblems of Parametric EstimationParametric Estimation
Method-Independent Problems
ISI Overload Channel Memory exceeds State Memory

Quantization Amplitude differences become invisible

1500 ps/nm 0.6UI NRZ

Neglected Effects → wrong PDF shape or parameters
E.g. imperfect clock (here: sinusoidal jitter)

„„WrongWrong““ MetricsMetrics??
Using PDF values → wrong PMF value
Computing PDF is easy, but PMF is hard. 

Note: Noise PDF for coarse state 
is a mixture density (i.e. a convex 
combination of several PDFs)

Unrealistic Noise Model → wrong PDF shape
When noise model does not sufficiently accurately model 
the „true“ noise PDF, metrics errors are introduced.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Histogram mean versus true mean

true mean
histogram mean
ADC thresholds
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Model Mismatch under ISI overload

Model PDF
True PDF
Means
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Resulting Log-Likelihood (Metric)

Model Metrics
True Log-Likelihoods
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Model Mismatch under Sinusoidal Jitter
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Model metrics vs. true log-likelihoods

real
model
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Model PDF vs. true PDF

real
model

Note: Jitter impact on PDF depends on
slope and is therefore pattern-dependent:
• Strong impact on edges.
• Little impact on rails

ISI Overload → wrong PDF shape and parameters
Using a model density instead of the mixture density. 

Quantization → wrong PDF parameters
Mean quantized ≠ true mean
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Channel Estimation Methods for MLSE MetricsChannel Estimation Methods forChannel Estimation Methods for MLSEMLSE MetricsMetrics

Any performance differenceAny performance difference??

ParametricParametric NonNon--parametricparametric

metrics

histograms
estimate
parameters

compute PDF

compute PMF

channel observations
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OFE AGC ADC MLSE

Channel
Observer

Metrics
Computer

τ

CR

Channel
Estimator

MLSE needs metrics.

Metrics are computed 
from the channel model

Channel estimator uses the 
channel observations to estimate
a channel model

Channel observer associates delayed 
inputs (quantized waveform samples) 
and outputs (bit sequences, patterns)

Sampling clock jitter 
impacts performance

Quantizer resolution 
impacts performance

Number of states in Trellis 
impacts performance

There are two approaches of channel estimationThere are two approaches of channel estimation
Estimate parameters (e.g. μ, σ) of
Probability Density Function (PDF) to
compute log-likelihood metrics

Estimate probabilities, i.e. values of
Probablity Mass Function (PMF)
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Abstract and Problem StatementAbstract and Problem StatementAbstract and Problem Statement

MLSE needs branch metrics

Branch metrics are log-likelihoods

Two approaches to estimate likelihoods from observations:

Non-Parametric Likelihoods are estimated directly
(from observed relative frequencies)

Parametric Likelihoods are estimated indirectly
(parameters of a probabilistic model are 
estimated from observations)

We compare the performance of MLSE-based receivers with parametric and non-
parametric channel estimation methods and characterize their sensitivity against 
quantization, sampling jitter, and intersymbol interference (ISI) overload (1)

We compare the performance of MLSE-based receivers with parametric and non-
parametric channel estimation methods and characterize their sensitivity against 
quantization, sampling jitter, and intersymbol interference (ISI) overload (1)

Do parametric models suffer from effects not covered in the model?
Are there relevant “model mismatch” penalties ?

Do parametric models suffer from effects not covered in the model?
Are there relevant “model mismatch” penalties ?

Histogram Method “HM” a practice-proven canonical method of non-parametric channel estimation

SQRT method “SQRT” a particularly efficient example of a parametric method

Problem StatementProblem Statement

AbstractAbstract

Simulation ApproachSimulation Approach

(1)  ISI Overload: The physical
channel memory exceeds the 
state memory of the MLSE

Compare  ultimately and practically achievable performance of HM and of SQRT.Compare  ultimately and practically achievable performance of HM and of SQRT.
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Results and ConclusionsResultsResults andand ConclusionsConclusions

We compared ultimately and practically achievable performance 
We assumed that SQRT suffers more from “quantization” and “model mismatch”
We found such penalties but they are not very significant
The HM channel estimator has practical performance advantage for 3-bit ADC

The SQRT channel estimator has speed & complexity advantages for N-bit ADC

For further study: Model mismatch penalties at lower BER?

We compared ultimately and practically achievable performance 
We assumed that SQRT suffers more from “quantization” and “model mismatch”
We found such penalties but they are not very significant
The HM channel estimator has practical performance advantage for 3-bit ADC

The SQRT channel estimator has speed & complexity advantages for N-bit ADC

For further study: Model mismatch penalties at lower BER?

penalty is not very relevant – achieves the same 
dispersion limit (e.g. 5000 ps/nm at 15 dB)slightly worse, but ...Practical Performance?

not for relevant jitter magnitudesnoJitter Penalty?

significant only for 3-bit ADCyes, but ...Quantization Penalty?

only at low dispersion and for PMD –
and outside of useable operation rangeyes, but ...Model Mismatch Penalty?

without complexity limitations, i.e. for unlimited 
ADC resolution and unlimited number of statesidenticalUltimate Performance?

SQRTSQRT MethodMethod compared to compared to HistogramHistogram MethodMethod (@ BER 10(@ BER 10--33)) in a Nutshellin a Nutshell

ConclusionsConclusions
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Simulation SetupsSimulation SetupsSimulation Setups

for unconstrained complexityfor CD, PMD, Jitter

infinite11.8 dBExtinction 
Ratio

SSMF (D=16 ps/nm), linear propagation

2 samples per bit, self-training,
varied number of states

gain optimized(1) roughly, best sampling phase,
varied quantizer resolution

NRZ @ 10.7 Gbit/sFormat

AGC / ADC

PRBS-18 
(218 bits, 20 samples/bit)

DeBruijn-15
(219 bits, 32 samples/bit)Data

MLSE

5-pole Bessel (7.5 GHz)4-pole Bessel (7.5 GHz)El. Filter

SuperGauss 2nd Order (35 GHz)Flat Top (40GHz)Opt. filter

Fiber

5-pole Bessel (7.5 GHz)0.3 UI rise-time erfc shaped
+ 1-pole Bessel (10.7 GHz)Shaping Filter

Setup 2 „Good Tx“Setup 1 „Bad Tx“ 

SetupsSetups

Electrical
filterFiber

(linear)
+

ASE 
noise

Optical
filter

SQRT
MLSE

HM
MLSE

(·)²Tx

Photo DiodeTransmitter

parameters varied
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(1) For HM, gain was not optimized. Mean rectified 
value was maintained at a constant level.

Two setups were used
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HM: 2, 8, 32, 64, 256 states
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SQRT: 2, 8, 32, 64, 256 states
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(b)

Performance with Unconstrained MLSE and ADCPerformancePerformance with Unconstrainedwith Unconstrained MLSE and ADCMLSE and ADC

SQRT Method Histogram Method

0.4 dB model mismatch penalty
(with infinite Extinction Ratio)

Slightly increased 
quantization penalty

AchievableAchievable Performance? NoPerformance? No difference fordifference for fine ADCfine ADC

Same achievable 
dispersion performance

„Exact Metrics“ 
(Karhunen Loeve 
Series Expansion)

SQRT versus HM penalty
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HM (16 States)
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SQRT (16 States)
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(a)

Dispersion Tolerance with 16-states MLSE and ADCDispersionDispersion Tolerance withTolerance with 1616--statesstates MLSE and ADCMLSE and ADC
SQRT Method Histogram Method

still 0.3 dB back-to-back
model mismatch penalty
(at 12 dB extinction ratio)

Irrelevant small model mismatch 
penalty under ISI overload (outside
of useable operation range!)

0.15 dB larger quantization penalty 
for 3-bit ADC at medium CD

Dispersion? RelevantDispersion? Relevant differences are smalldifferences are small

SQRT versus HM penalty

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 1000 2000 3000 4000 5000 6000

Chromatic Dispersion (ps/nm)

O
SN

R
 (d

B)

3 bits
4 bits

Artifact!
Penalty remains positive
when HM is gain optimized
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HM (4 States)
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1st order PMD with 4-states MLSE and ADC11stst order PMDorder PMD withwith 44--statesstates MLSE and ADCMLSE and ADC

SQRT (4 States)
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(a)

SQRT Method Histogram Method

0.2 dB quantization 
penalty for 3-bit ADC

Large but irrelevant model mismatch penalty for
ISI overload (outside of useable operation range)

PMD? RelevantPMD? Relevant differences remain smalldifferences remain small

SQRT versus HM penalty
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Clock Recovery with Jitter (16-states and 4-bit ADC)Clock Recovery withClock Recovery with JitterJitter (16(16--statesstates and 4and 4--bitbit ADC)ADC)

10

11

12

13

14

0 0.05 0.1 0.15 0.2
Sinusoidal Peak-to-Peak Jitter (UI)

O
SN

R 
(d

B)
 @

 B
ER

 =
 1

e-
3

3000 ps/nm, HM

3000 ps/nm, SQRT

blank

blank

0 ps/nm, HM

0 ps/nm, SQRT

HF Jitter Specification Limit:

(a)

10

11

12

13

14

0 0.02 0.04 0.06 0.08 0.1
Gaussian RMS Jitter (UI)

O
SN

R 
(d

B)
 @

 B
ER

 =
 1

e-
3 3000 ps/nm, HM

3000 ps/nm, SQRT
blank
blank
0 ps/nm, HM
0 ps/nm, SQRT

6 σ  ~ 0.15 UIpp

(b)

Sinusoidal Jitter
(Test Signal)

Gaussian Jitter

JitterJitter? No relevant? No relevant differencedifference
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