MLSE Channel Estimation Parametric or Non-Parametric?

Optical Fiber Communication Conference 2008

Parametric versus Non-Parametric Branch Metrics for **MLSE-based Receivers with ADC and Clock Recovery**

Stefan Langenbach ⁽¹⁾, Gabriella Bosco ⁽²⁾, Pierluigi Poggiolini ⁽²⁾, Theo Kupfer ⁽¹⁾

1) CoreOptics, Nordostpark 12-14, D-90411 Nürnberg, Germany – {stefan,theo}@coreoptics.com

2) Politecnico di Torino, Corso Duca Abruzzi 24, Torino, Italy – {gabriella.bosco,pierluigi.poggiolini}@polito.it

Part of this work was sponsored by the EU Integrated Project NOBEL II, WP5

Non-Parametric: Canonical Histogram Method – HM

Eye and ADC thresholds

Non-parametric Method

- Determine detected bit pattern d
- Associate observed quantized amplitude r
- Count observed amplitudes r for pattern <u>d</u> into a histogram N(d, r)
- Metrics for given d and r is $\sim \log N(d, r)$

Pros

- Simple just counting events
- Robust insensitive to model mismatch

Cons

- Data collection time ~ ADC resolution **+**
- Number of counters ~ ADC resolution **+**
- Possibly more sensitive to error propagation? (decision errors translate into metrics errors)

Canonical metrics Metrics for given r is the logarithm of the observed relative frequency value.

OFC 2008 JThA60

Histogram based channel model No parameters are estimated. But a full amplitude histogram needs to be "measured" for each bit pattern.

Non-Parametric²

Parametric: Square Root Method – SQRT

OFC 2008 JThA60

\$

 \oplus

•

⊕.

\$

⊕

\$

Pros

Cons

Only the **mean value** for each bit pattern needs to be estimated when signal independent noise is postulated (i.e. when the red PDFs are used)

Parametric 3

Possible Problems of Parametric Estimation

Channel Estimation Methods for MLSE Metrics

OFC 2008 JThA60

Any performance difference?

Channel observer associates delayed inputs (quantized waveform samples) and outputs (bit sequences, patterns)

> Channel estimator uses the channel observations to estimate a channel model

Non-parametric

Abstract and Problem Statement

Abstract

We compare the performance of MLSE-based receivers with parametric and nonparametric channel estimation methods and characterize their sensitivity against quantization, sampling jitter, and intersymbol interference (ISI) overload ⁽¹⁾

MLSE needs branch metrics	Non-Parametric	Likelihoods are estimated direction (from observed relative freque
Branch metrics are log-likelihoods		
Two approaches to estimate likelihoods from observations:	Parametric	Likelihoods are estimated indir (parameters of a probabilistic r estimated from observations)

Problem Statement

Do parametric models suffer from effects not covered in the model? Are there relevant "model mismatch" penalties ?

Simulation Approach

Histogram Method "HM" SQRT method "SQRT"

a practice-proven canonical method of non-parametric channel estimation a particularly efficient example of a parametric method

Compare ultimately and practically achievable performance of HM and of SQRT.

OFC 2008 JThA60

ctly encies)

rectly model are (1) ISI Overload: The physical channel memory exceeds the state memory of the MLSE

Results and Conclusions

SQRT Method compared to Histogram Method (@ BER 10⁻³) in a Nutshell

Ultimate Performance?	identical	without complexity limitati
Practical Performance?	slightly worse, but	penalty is not very relevand dispersion limit (e.g. 5000
Model Mismatch Penalty?	yes, but	only at low dispersion and and outside of useable op
Quantization Penalty?	yes, but	significant only for 3-bit A
Jitter Penalty?	no	not for relevant jitter magr

Conclusions

We compared *ultimately* and *practically* achievable performance We assumed that SQRT suffers more from "quantization" and "model mismatch" We found such penalties but they are not very significant The HM channel estimator has practical performance advantage for 3-bit ADC The SQRT channel estimator has speed & complexity advantages for N-bit ADC For further study: Model mismatch penalties at lower BER?

ions, i.e. for unlimited ited number of states

nt – achieves the same ps/nm at 15 dB)

d for PMD – peration range

DC

nitudes

Simulation Setups

References

Two setups were used

-			
	Setup 1 "Bad Tx"	Setup 2 "Good Tx"	
	for CD, PMD, Jitter	for unconstrained complexity	
Data	DeBruijn-15 (2 ¹⁹ bits, 32 samples/bit)	PRBS-18 (2 ¹⁸ bits, 20 samples/bit)	
Format	NRZ @ 10.7 Gbit/s		
Shaping Filter	0.3 UI rise-time erfc shaped + 1-pole Bessel (10.7 GHz)	5-pole Bessel (7.5 GHz)	
Extinction Ratio	11.8 dB	infinite	
Fiber	SSMF (D=16 ps/nm), linear propagation		
Opt. filter	Flat Top (40GHz)	SuperGauss 2 nd Order (35 GHz)	
El. Filter	4-pole Bessel (7.5 GHz)	5-pole Bessel (7.5 GHz)	
AGC / ADC	gain optimized ⁽¹⁾ <i>roughly</i> , best sampling phase, varied quantizer resolution		
MLSE	2 samples per bit, self-training, varied number of states		
⁽¹⁾ For HM, gain was not optimized. Mean rectified value was maintained at a constant level.			

Non-parametric Channel Estimation

suggested early for MLSE usage in non-linear channel

W. Sauer-Greff et al., "Modified Volterra Series and State Model Approach ...", Proc. IEEE Sig Proc 99, 19-23H. F. Haunstein et al., "Design of near optimum electrical equalizers for optical transmission ...", OFC 2001, WAA 4-1

implemented in real systems, e.g.

A. Färbert et al., "Performance of a 10.7 Gb/s Receiver with Digital Equalizer using ...", ECOC 2004, Th4.1.5

(many) experimental data available, e.g.

J.P. Elbers et al., "Measurement of the dispersion tolerance of optical duobinary …", OFC 2005, OThJ4
S. Chandrasekhar et al., "Chirp-managed laser and MLSE-RX …", PTL, Vol. 18, No. 14, 1560-1562, 2006
S. Chandrasekhar et al., "Performance of MLSE Receiver …", PTL, Vol. 18, No. 23, 2448-2450, 2006
J. M. Gené et al., "Joint PMD and Chromatic Dispersion Compensation Using an MLSE", ECOC 2006, We2.5.2
I. L. L. Polo et al., "Comparison of Maximum Likelihood Sequence Estimation equalizer …", ECOC 2006, We2.5.3
J. D. Downie et al., "Experimental Measurements of the Effectiveness of MLSE …", OFC 2007, OMG4
C. Xie et. al., "Performance Evaluation of Electronic Equalizers for Dynamic PMD …", OFC 2007, OTuA7

Parametric Channel Estimation

studied since long (for perfomance analysis), e.g.

P. A. Humblet, M. Azizoglu, "On the Bit Error Rate ...", JLT 9/11 p.1577 (3), 1991 (and predecessors)A. Weiss, "On the Performance of Electrical Equalization in Optical Fiber Transmission Systems", PTL, Vol. 15, 1225-1227, 2003

well covered in recent MLSE literature, e.g.

D. E. Crivelli et al., "On the Performance of Reduced-State Viterbi Receivers ...", ECOC 2004, We4.P.083
N. Alic et al., "Signal statistics and maximum likelihood sequence estimation ...", Optics Express, Vol.13, No. 12, 4568-4578, 2005
G. Bosco et al., "Long-Distance Effectiveness of MLSE IMDD Receivers", PTL, vol. 18, pp.1037-1039, 2006
T. Freckmann, J. Speidel, "Viterbi Equalizer with Analytically Calculated Branch Metrics ..."PTL, Vol. 18, 277-279, 2006
T. Froggi et al., "Maximum-likelihood sequence detection with closed-form metrics ...", JLT, Vol. 24, No. 8, 3073-3087, 2006
P. Poggiolini et al., "Branch Metrics for Effective Long-Haul MLSE", ECOC 2006, We2.5
M. R. Hueda et al., "Parametric Estimation of IM/DD Optical Channels ...", JLT, Vol. 25, No. 3, 957-975, 2007

(some) experimental data from offline simulations, e.g.

P. Poggiolini et al., "1,040 km uncompensated IMDD transmission ...", ECOC 2006, post-deadline Th4.4.6

References

Performance with Unconstrained MLSE and ADC

SORT Method

Histogram Method

OFC 2008 JThA60

Achievable Performance? No difference for fine ADC⁹

Dispersion Tolerance with 16-states MLSE and ADC

SORT Method

Histogram Method

Dispersion? Relevant differences are small 10

1st order PMD with 4-states MLSE and ADC

SORT Method

Histogram Method

SQRT versus HM penalty

OFC 2008 JThA60

PMD? Relevant differences remain small 11

Clock Recovery with Jitter (16-states and 4-bit ADC)

Sinusoidal Jitter

Gaussian Jitter

Setup: "Bad Tx"

OFC 2008 JThA60

Jitter? No relevant difference 12