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▪Motivation and scenario

▪ Raman amplifier design

▪ Raman amplification analysis





▪ To face the continuously growing 
internet data traffic, the increasing 
capacity demand and the new 
requirements of 5G networks
▪ Improve digital signal processing (DSP) 

techniques

▪ Improve transmission medium

▪ Exploit space division multiplexing (SDM)

▪ Extend transmission band from C-band 
towards multi-bands (O,E,S,C and L)
▪ Exceeding the optimal working region of 

Erbium Doped Fiber Amplifiers (EDFAs) 
covering C+L-band

Source: Cisco Annual Internet Report, 2018–2023
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


▪ Possible amplification schemes when moving from C-band towards 
multi-bands 
▪ Hybrid Erbium/Bismuth Doped Fiber Amplifier + Raman Amplifier (xDFA+RA)

▪ Pure Raman Amplifier (RA)

▪ Semiconductor Optical Amplifier (SOA)

▪ In particular, RAs are gaining a lot of attention thanks to 
▪ Availability of ultra-wide amplification over multi-bands (O, E, S, C and L bands) 

▪ Possibility to provide flexible and programmable gains by properly adjusting 
pump powers and frequencies

▪ Lower noise figure than other amplification schemes in case of distributed 
Raman amplification along the optical span





▪ By a proper tuning of Raman pumps (powers and frequencies) it is possible to obtain
a desired gain
▪ Flat gain over the transmission bands

▪ Tilted or arbitrary gains when used as a gain flattening tool to correct the tilt due to the 
inter-channel stimulated Raman scattering (ISRS) effect (in particular in a multi-band 
scenario) or the EDFA tilt



▪ It is a challenging optimization problem because of the nonlinear ordinary differential equations (ODEs) 
that needs to be solved for different boundary conditions (both begin and end of the optical span link)

▪ Different strategies have been studied 
▪ Genetic Algorithms (GA)

▪ Machine Learning (ML)

▪ Other optimization strategies (e.g. Sequential Least Squares Programming (SLSQP) algorithm)
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(c),(f): Predicted and 
target flat and 
tilted (on–off) gain 
profiles with 
respect to 
frequency
(i): Maximum error 
of gain prediction 
with respect to 
total bandwidth
(l): Root-mean-
square-error of gain 
prediction with 
respect to total 
bandwidth.





▪ In general, Raman amplification based on stimulated Raman scattering (SRS) is 
modeled by a set of ODEs describing the power evolution along frequency and spatial 
positions [3]:

▪
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with 𝑖 identifying the signal channel for 𝑖 = {1,… , 𝑛𝑐ℎ} and 𝑗 identifying the pump for 
𝑗 = {1,… , 𝑛𝑝𝑢𝑚𝑝𝑠 }

▪ Not practical in future optical networks providing
▪ Self-resource allocation

▪ Self-automation for fast routing

▪ Adaptability to partial traffic allocation due to different spectral loads (no longer almost static traffic
only)

Machine Learning as ultra-fast tool to predict
Raman gain and ASE noise profiles

[3] J. Bromage, ‘Raman Amplification for 
Fiber Communications Systems’, Journal of 
Ligthwave Technology, vol. 22, no. 1, pp. 
79-93, 2004.



Pumps
(f1,P1,…, f5, P5)

DISTRIBUTED RAMAN AMPLIFIER
SMF (𝐿𝑠𝑝𝑎𝑛 = 100𝑘𝑚)

NUMERICAL RAMAN SOLVER [5]

f [THz]185 196

G(f)

OUTPUT

f [THz]185 196

N(f)

▪ Full load data-set
▪ Partial load data-set

185 196 f [THz]

1 
m

W 1 Nch

▪ C+L band: 𝑓 ∈ 185,196 THz 
▪ Nch = 220 channels (50 GHz 

frequency slot spacing, 1mW 
power per slot)

Wavelength Division Multiplexing 
(WDM) comb

Pump frequencies: 
f1 = 210.37 THz, f2 = 207.14 THz, 
f3 = 204.01 THz, f4 = 200.97 THz, 
f5 = 198.03 THz
Pump powers: 
𝑃𝑖 ∈ 0,250 𝑚𝑊 with 𝑖 = 1,… 5

INPUT

Raman Gain

ASE noise

[4] A. M. Rosa Brusin, U. C. de Moura, V. Curri, D. Zibar and A. Carena, 
"Introducing Load Aware Neural Networks for Accurate Predictions of 
Raman Amplifiers," in Journal of Lightwave Technology, vol. 38, no. 23, 
pp. 6481-6491, 1 Dec.1, 2020, doi: 10.1109/JLT.2020.3014810.

[5] GNPy, [Online]. Available: 
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▪ 220 channels of 50 GHz carrying
1 mW of power 
▪ Full load: all the frequency slots are 

ON (already considered in [6])

▪ Partial load: each frequency slot can 
be ON or OFF

▪ In partial load scenario: 2220

possible combinations + pump 
power arbitrariness

▪ 10 adjacent frequency slots 
grouped together to form a sub-
band

▪ Each sub-band is 500 GHz wide 
and can assume two states: ON 
or OFF

▪ Total of 22 sub-bands over the 
entire 11 THz C+L-band
▪ 12 sub-bands in the L-band 

▪ 10 sub-bands in the C-band

[6] A. M. Rosa Brusin, V. Curri, D. Zibar and A. Carena, ‘An Ultra-Fast Method for 
Gain and Noise Prediction of Raman Amplifiers’, ECOC, Dublin, Ireland, 
September 2019, paper Th1C3.
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▪ Full load data-set: 5000 cases for Class C+L 
with 22 sub-bands ON 

▪ Partial load data-set: 500 cases for each class 
and sub-class, for a total of 11000 cases



▪ To analyze the effect of different partial loads with respect to a fully 
loaded input spectrum we consider the following scenario
▪ C+L band: 𝑓 ∈ [185,196] THz

▪ Fixed pump powers and frequencies

▪ 𝑓𝑝,1…5 = [210.51 207.28 204.15 201.11 198.16] THz

▪ 𝑃𝑝,1…5 = [246.7 237.7 194.2 192.7 168.8] mW

▪ We generate the Raman gain (ON-OFF gain) and the ASE noise profiles 
for the full load case

▪ To emulate the partial loads, for each sub-class (number of sub-bands 
ON from 1 to 21) we generate 100 different load configurations with 
randomly selected sub-band position in the entire transmission band

▪ Then considering these different partial loads, we generate the 
corresponding gain and noise profiles by means of the numerical 
Raman solver



∆GON-OFF > 2 dB 0.5 dB < ∆GON-OFF < 1.8 dB

0.4 dB < ∆GON-OFF < 1.3 dB



Load Unaware NN (LU-NN) Load Aware NN (LA-NN)

Pump 
powers
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powers

Spectral
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noise 
profile
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gain 

profile or 
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▪ Two separated data-sets are considered: training data-set and testing data-set, for the two stages 
of the process



𝑃1, 𝑃2 ,… ,𝑃𝑁𝑝
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𝑃1 , 𝑃2,… , 𝑃𝑁𝑝 , 𝑆1, 𝑆2,… , 𝑆𝑁𝑠𝑏

Input 
data

NUMERICAL 
RAMAN SOLVER

TRAINED NEURAL 
NETWORK

LU-NN

LA-NN

Target profile
𝑌𝑡𝑎𝑟𝑔𝑒𝑡

Predicted profile
𝑌𝑝𝑟𝑒𝑑

COMPARISON
Maximum error:
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Median value



Box: 50% of cases



Whiskers: 90% of cases



Outliers

Outliers



Median ~ 0 dB
Box size < 0.14 dB
Whisker size < 0.39 dB



▪ Several works have shown that ML is a promising, ultra-fast 
and highly accurate tool for the design of Raman amplifiers, 
in particular in a multi-band scenario

▪Moreover, when moving towards multi-band transmissions 
(in our case C+L band), partial loads may have non-negligible
impact on Raman amplification gain and ASE noise profiles
due to ISRS

▪ML can be also used for ultra-fast and highly accurate 
predictions of gain and noise profiles
▪ In case of partial loads a LA-NN is necessary to take into account 

the different spectral loads
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