

EXPERIMENTAL COMPARISON OF PM-16-QAM AND PM-32-QAM WITH PROBABILISTICALLY SHAPED PM-64-QAM

L. BERTIGNONO¹, **D. PILORI¹**, A. NESPOLA², F. FORGHIERI³ AND G. BOSCO¹

- 1. DET, POLITECNICO DI TORINO, 10129 TORINO (ITALY) DARIO.PILORI@POLITO.IT
- 2. ISTITUTO SUPERIORE MARIO BOELLA, 10129 TORINO (ITALY)
- 3. CISCO PHOTONICS, 20871 VIMERCATE (ITALY)

INTRODUCTION

- The use of PS has been recently applied to increase both receiver sensitivity and transceiver flexibility
- Past works reported maximum reach gains ranging from 7%¹ to 40%²
 - However, these results have been obtained with different constellation entropies, target MI and FEC code rates
- The change of constellation probabilities may have an impact on non-linear interference noise
 - 1. Pan et al., JLT **34**, pp. 4285-4292 (2016)
 - 2. Buchali et al., JLT **34**, pp. 1599-1609 (2016)

BASICS OF PROBABILISTIC SHAPING

Schulte et al., IEEE IT 62(1), pp. 430-434 (2016)

.........

• Uniformly-shaped constellations:

Probabilistic shaping with PAS scheme:

$$\label{eq:AIR_PS} \begin{split} \text{AIR}_{\text{PS}} = \mathcal{H}(P) - (1-r)m \\ & \quad \\ \\ \text{Entropy of PS} \\ \text{constellation} \\ \end{split} \\ \textit{FEC code rate} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split}$$

Böcherer et al., IEEE COM 63(12), pp. 4651-4665 (2015)

GOALS OF THIS WORK

- 1. Comparison of **PS-64-QAM** with lower-cardinality uniform constellations (16- and 32-QAM) <u>at the</u> <u>same net data rate</u>:
 - "Same-entropy" comparison: $\mathcal{H}(P) = m_{\mathrm{U}}$

$$r = 1 - (1 - r_{\mathrm{U}})\frac{m_{\mathrm{U}}}{m}$$

• "Same FEC rate" comparison: $r=r_{
m U}$

$$\mathcal{H}(P) = m + r(m_{\rm U} - m)$$

2. Impact of non-linear effects, comparing with EGN¹ predictions

1. Carena et al., Opex **22**(13), pp. 16335-16362 (2014)

PS 64-QAM CONSTELLATIONS

Entropy (bit/symb)	Compared with	Comparison type
4	16 0 0 0	Same H(P)
4.33	10-QAIVI	Same FEC
5	32-QAM	Same H(P)
5.17		Same FEC

EXPERIMENTAL SETUP

CISCO

TRANSMITTER DSP

Parameter	Value
RRC roll-off	15%
Symbol rate	16 GBaud
DAC sampling rate	64 Gs/s
DAC 3-dB bandwidth	13 GHz
Sequence length	2 ¹⁴

......

CISCO

RECEIVER DSP

Parameter	Value	
ADC sampling rate	50 Gs/s	
ADC bandwidth	33 GHz	
Equalizer taps	60	
CPE memory	32 samples	

BACK-TO-BACK RESULTS

ılıılı cısco

10

PROPAGATION RESULTS

......

CISCO

OPTCOM

- Optimal P_{ch}= -1.5 dBm
- Same gains as back-to-back¹

1. Curri et al., JLT **33**(18), pp. 3921-3932 (2015)

COMPARISON WITH EGN PREDICTIONS

- Solid lines: EGN predictions with correction factor for PM-QPSK¹
- **Dots**: experimental measurements

......

CISCO

OPTCOM

1. Nespola et al., proc. of ECOC2016

CONCLUSIONS

- By comparing at the same net data rate PS-64-QAM with 16- and 32-QAM, we measured maximum reach gains ranging from 10% to 25% at the same MI
 - A more theoretical comparison will be presented with our poster W2A.57 (Wed 03/22 10am-12pm)
- Thanks to phase recovery, PS-64-QAM constellations have no propagation penalty with respect to uniform lower-cardinality QAM constellations
 - Performance of these systems is predicted with great accuracy by the EGN model with PM-QPSK correction factor

POLITECNICO DI TORINO

THANK YOU

DARIO.PILORI@POLITO.IT - HTTPS://WWW.OPTCOM.POLITO.IT

