

LOW-COMPLEXITY NON-LINEAR PHASE NOISE MITIGATION USING A MODIFIED SOFT-DECODING STRATEGY

DARIO PILORI¹, ANTONINO NESPOLA², PIERLUIGI POGGIOLINI¹, FABRIZIO FORGHIERI³ AND GABRIELLA BOSCO¹

1. DET, POLITECNICO DI TORINO, 10129 TORINO (TO), ITALY

.

CISCO

- 2. LINKS FOUNDATION, 10138 TORINO (TO), ITALY
- 3. CISCO PHOTONICS ITALY S.R.L., 20871 VIMERCATE (MB), ITALY

LINKS

SMB SIII

INTRODUCTION

Future systems require high spectral efficiency and datarate flexibility

 Therefore, large QAM constellations often coupled with constellation shaping are employed

.....

CISCO

PHASE NOISE

- Large constellations suffer from phase noise
 - 1. Laser phase noise
 - 2. Non-linear phase noise (Kerr effect)
- Large constellations and shaping generate more non-linear phase noise

 Phase recovery compensates for slow phase noise

R. Dar and P.J. Winzer, J. Lightwave Technol. **35**(4), 903-930 (2017)
D. Pilori *et al.*, J. Lightwave Technol. **36**(2), 501-509 (2018)
D.A.A. Mello *et al.*, J. Lightwave Technol. **36**(22), 5096-5105 (2018)

......

GOAL OF THIS WORK

- Show a simple and low-complexity decoder that takes into account the presence of phase noise that is:
 - Residual after CPE.
 - Memoryless
- **Apply** this method to an experimental scenario:
 - Probabilistically-shaped 64-QAM
 - Legacy low-dispersion optical fiber (NZDSF) that generates strong non-linear phase noise

CHANNEL MODEL

CHANNEL TRANSITION PROBABILITY

111.11

This allows the derivation of an <u>analytical expression</u> of the channel probability:

$$p(y|a) \approx \sqrt{\frac{\kappa_{\phi}}{8\pi^3}} \frac{e^{-\kappa_{\phi}}}{\sigma_n^2} \exp\left(-\frac{|y|^2 + |a|^2}{2\sigma_n^2} + \left|\frac{ya^*}{\sigma_n^2} + \kappa_{\phi}\right|\right)$$

This expression can be then used to perform soft decoding

- Log-likelihood ratios can be analytically computed (no histograms)
- GMI can be experimentally evaluated with Monte-Carlo integration

F. Kayhan and G. Montorsi, IEEE Trans. Wireless Commun. 13(5), 2874-2883 (2014)

LLR COMPUTATION EXAMPLE

Bit-wise log-likelihood ratios (LLRs) heat map for:

LINKS

- 16-QAM
- SNR = 13 dB

......

CISCO

• $\sigma_{PN} = 10^{\circ}$

OPTCOM

EXPERIMENTAL SETUP

Parameter	Value
EDFA noise figure	5.2 dB
Chromatic dispersion	2.65 ps/(nm km)
Non-linearity coeff.	2 1/(W km)
Attenuation	0.23 dB/km

......

CISCO

LINKS

- Pure AWGN channel
- AWGN channel with memoryless phase noise (PNaware)

......

CISCO

CONSTELLATIONS UNDER TEST

CISCO

- Two different PS-64-QAM constellations were tested
- Same net data rate after 20% FEC as:
 - Uniform 16-QAM
 - Uniform 32-QAM
- Normalized GMI (NGMI) threshold: 0.90

BACK-TO-BACK RESULTS

Without non-linear phase noise, PN-aware decoding does not improve, nor worsens, performance

LINKS

CISCO

PROPAGATION RESULTS: 16-QAM

- Phase noise severely impairs PS64QAM-1
 - Negative reach gain!

Strong gain of PN-aware decoding

LINKS

PROPAGATION RESULTS: 32-QAM

 Slightly smaller gain than 16-QAM

LINKS

CONCLUSIONS

- Using large constellations, with shaping, over legacy fibers (NZDSF) generate a strong non-linear phase noise.
- The phase recovery eliminates the slow phase noise component, leaving a residual memoryless phase noise.
- An optimized soft decoding strategy can **improve** the performance in the presence of such noise

ACKNOWLEDGMENTS

Acknowledgements:

 This work is carried out in the PhotoNext initiative at Politecnico di Torino <u>http://www.photonext.polito.it/</u>

 The work was partially sponsored by Cisco Photonics Italy S.r.l.

THANK YOU

DARIO.PILORI@POLITO.IT

SLIDES AVAILABLE FOR DOWNLOAD AT: <u>HTTPS://WWW.OPTCOM.POLITO.IT/TALKS</u>

BACKUP SLIDES

GRAPHICAL EXAMPLE: HARD DECISION REGIONS

PN-aware expression can be also applied to hard decision

CISCO

LINKS

EXAMPLE OF NATIONAL NETWORK

11111

CISCO

	Working path			Protection path		
	min	average	max	min	average	max
hop	1	4.72	11	1	6.46	15
ngth[km]	4	758	2164	36	1046	2606

Nodal degree	Numbers of nodes
2	10
3	12
4	18
5	4

G.655 G.652

G.653

LINKS

Telecom Italia network (2013)

From: EU project "Idealist" D.1.1 technical report