

REAL-TIME DEMONSTRATION OF POLARIZATION-MULTIPLEXED PAM USING A COMPACT SILICON PHOTONICS DEVICE

Antonello Nespola², Sean Anderson³, Paolo Savio², Dario Pilori¹, Luca Bertignono¹, Matt Traverso³, Mark Webster³, Fabrizio Forghieri³,

Roberto Gaudino¹

OFC 2018

Outline

- The proposed solution: <u>polarization-multiplexed (PM) PAM-M and direct</u> <u>detection in short reach data center interconnects (<2 km, SMF)</u> to double capacity per wavelength/laser
- Silicon Photonic chip for endless polarization rotation
- Experimental demonstration of a polarization control algorithm on PM-PAM2
- Theoretical investigation on the impact of angular errors in PM-PAM4

THE PROPOSED ARCHITECTURE:

POLARIZATION-MULTIPLEXED (PM) PAM-M AND DIRECT DETECTION

IN SHORT REACH DATA-CENTER INTERCONNECTS (<2 KM)

Rationale of our work

n

The proposed solution:

- TX: two independent PAM transmission over each polarization in SMF
- RX: active polarization rotator to align the optical signals entering two separate direct detection receivers

For <2km distance and 2023 time frame the majority of the

Rationale:

Double bit rate

- "Hands up" poll in OFC2018 Sunday Workshop:
- For instance S1A DSP for Short Reach and Client Optics What Makes Sense?
 In tui
- ... but due to th
 - Avoid coher
 - Avoid full St
 - They still
- Rump-up session on this topic tonight

audience voted for direct detection

- till
- Avoid Kramers-kroning עם receivers
 - They require one DAC but with 2x bandwidth (in KK basic implementation)

The proposed architecture

Polarization multiplexing – direct detection receiver

This is not in itself a new idea

But focus of this work is on:

1) Implementation of the polarization rotator on a <u>Silicon Photonics platform</u>

SILICON PHOTONIC CHIP FOR OPTICAL POLARIZATION CONTROL

Structure of the Silicon photonic chip

- Cascade of five sections, each made of a phase shifter and a 2x2 symmetric coupler
- It was demonstrated in the past (PMD compensator, 2001) that this structure can generate arbitrary polarization rotations

EXPERIMENTAL DEMONSTRATION OF A POLARIZATION CONTROL ALGORITHM ON PM-PAM2

Experimental setup

Transmitter characteristics:

- Two uncorrelated PAM-2 streams at 28 Gbps each
- Two low-frequency pilot tones at f_x=4 and f_y=7 MHz
 - To "label" the two polarizations

Receiver characteristics:

- Polarization recovery algorithm is implemented over a "low-speed" DSP microcontroller that uses as input the amplitudes of the two received pilot tones on one output waveguide. The five DACs update rate is 30 ksample/s
- BER is real-time measured on one output waveguide

Polarization rotator control algorithm

- Based on measurement of received pilot tones amplitudes A_x and A_y
- Feedback error signal is $C_e = A_x A_y$ is used
- A gradient-based algorithm maximizes C_e over the five available degrees of freedom
 - i.e. the five available driving voltages for the five phase-shifters thermal heathers
- Endless polarization control must be achieved under the <u>limited available range</u> for the five voltages
 - In the current version of the chip, the available range corresponds to about 2π phase shift on each section

"Modified $\pm \Delta$ algorithm"

CISCO

FOR EACH AVAILABLE VOLTAGE:

1) Try a + Δ step (if inside voltage range)

2) Try a - Δ step (if inside voltage range)

3) Set the sign (+ Δ or - Δ) that gave an improvement on the target parameter $C_{\rm e}$

Evolution of output state of polarization in Stokes Space (simulations)

Initial transient in polarization control algorithm (Experiments)

Experimental results

For completely random polarization scrambling, we observed unlocking events for simultaneous "out-of-bound" on more than 2 voltages The power penalty at the target KP4 FEC threshold BER= $2 \cdot 10^{-4}$ is 0.6 dB at 40 rad/sec.

1

OP

Newer experimental results

In the six months after the submission of the paper to OFC2018, we significantly improved results

- 1. Upgraded control software algorithm
- 2. Randomly scrambled input polarization
- We obtained polarization tracking speed higher than 100 rad/s

Long term measurements

INPUT

Fully scrambled input polarization at 100 rad/s

OUTPUT

- Real-time accumulated BER measurement
- Relatively stable output, but:
 - Slight increase in accumulated BER over the two hours of measurements, showing that we still have some sporadic error bursts
 - Partial unlocking events?
 - Currently under investigation

Summary of experimental results

- Demostration of polarization control for 100 rad/s random scrambling on Poincarè sphere
- The limit is related to the phase shifter speed (30 kHz)
- But 100 rad/s should be sufficient to track actual polarization rotations on short reach links <2km

THEORETICAL INVESTIGATION ON THE IMPACT OF ANGULAR ERRORS IN

PM-PAM4

Assessing the impact of angular errors

We performed a realistic time domain simulation for PM-PAM4 including:

- 56 Gbaud PAM-4 (giving 200 Gbit/s per wavelength)
 - Electrical bandwidth = 20 GHz for all optoelectronics
- Overall Jones matrix (for fiber+polarization controller) with angular errors

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix}_{out} = e^{i\varphi} \begin{bmatrix} e^{i\psi} & 0 \\ 0 & e^{-i\psi} \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} e^{i\Delta} & 0 \\ 0 & e^{-i\Delta} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \end{bmatrix}_{in}$$

- We assumed Adaptive LMS-based FFE equalization at RX with two options:
 - A serial-in serial out "SISO" approach in which the two equalizers at the receivers acts independently
 - A "2x2 MIMO" approach
 - Using a 2x2 real MIMO algorithm, similar to the one required for 16-QAM

Full time domain simulations on PM-PAM4

OFC 2018

• Numerical results as a function of the angle θ

 The two other angles in previous formula below turned out to be irrelevant for penalty

$$e^{iarphi}egin{bmatrix} e^{i\psi} & 0 \ 0 & e^{-i\psi} \end{bmatrix}egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix}egin{bmatrix} e^{i\Delta} & 0 \ 0 & e^{-i\Delta} \end{bmatrix}$$

These angles are defined in the Jones space (where for instance θ =90° means orthogonal polarizations). Error tolerance in Stokes space will be twice as much

CONCLUSIONS

- We proposed and experimentally demonstrated a PM-PAM approach to double capacity per wavelength/laser for short-reach SMF links
- We showed in particular the feasibility of:
 - A silicon photonic chip for polarization rotation
 - A «low-speed» DSP-based algorithm to achieve endless polarization control
 - Experimental demonstration of tracking speed up to 100 rad/s
- Open issues
 - We still have to solve sporadic partial unlocking events under randomly scrambled input polarization, to be investigated

REAL-TIME DEMONSTRATION OF POLARIZATION-MULTIPLEXED PAM USING A COMPACT SILICON PHOTONICS DEVICE

Antonello Nespola², Sean Anderson³, Paolo Savio², Dario Pilori¹, Luca Bertignono¹, Matt Traverso³, Mark Webster³, Fabrizio Forghieri³,

Roberto Gaudino¹

POLITECNICO

DI TORINO

PhD and Post-doc positions available at our new PhotoNext Center@POLITO For further information: please contact roberto.gaudino@polito.it

BACK-UP SLIDES

Recent upgrades to the hardware and software

- Look-up table to compensate quadratic relation between applied voltage and resulting phase shift
 - Thermal effects are proportional to the voltage square
- Soft-bound approach
 - When a voltage approaches a bound, the "error signal" is artificially increased
- Optimized re-centering technique
 - Optimized threshold to decide when to re-center
- Hardware upgrade: accuracy of pilot tones amplitude estimation greatly increased

- In our current implementation we didn't have access to baud-rate DSP parameters
 - This is why we introduced pilot tones, that can be extracted with low rate ADC
- But in a full PAM4 implementation, the monitoring parameter can be extracted directly from the parameters of the baud-rate adaptive equalizer

The power budget issue: comparison to a traditional single channel PAM in DD

OFC 2018