ROUTING SPACE SIZE ESTIMATION FOR RECONFIGURABLE OPTICAL NETWORKS

Alessio Ferrari, Mattia Cantono, Vittorio Curri DET, Politecnico di Torino, Torino, Italy <u>alessio.ferrari@studenti.polito.it</u>

ABSTRACT

We propose a heuristic method. The aim is to find a reasonable estimation of K_{MAX} . This parameter represents the number of lightpath

MOTIVATIONS

In the routing and wavelength allocation (RWA) process, usually, a k shortest path algorithm is used. The choice of the maximum value of k (K_{MAX}) is crucial for the RWA algorithm performances. A too small value enhances the frequency of blocking events. A too large value slow down the RWA process.

METHODOLOGY

INPUT:

- Network topology
- The connectivity matrix *CM*

RESULTS

- We used the 17-nodes and 26-link **German** backbone **network**
- $CM = N(1 I_{17}), N = 2, 3, 4, 5$
- α = **95%**, **99%** and **100%**

K-MAX ESTIMATION

The **CDFs** and \widehat{K}_{MAX} are computed.

• The percentile of allocated LP: α

ALGORITHM:

- 1. **Compute the routing space** using the k shortest path algorithm: $LP_{s,d}^k$
- 2. **Sort** the $LP_{s,d}^k$ based on a **priority** principle
- 3. Allocate the *CM* following the order
- 4. **Evaluate the CDF**: $F_K(k)$ of allocated $LP_{s,d}^k$
- 5. **Compute**: $\widehat{K}_{MAX} = F_K^{-1}(\alpha)$

PRIORITY TO:

- I. Higher **Number** of **hops**: $m_I = \sum_{l \in LP} 1$
- II. LP with link with **higher occurrence**

III. Higher **total occurrence**: $m_{III} = \sum_{l \in LP} O(l)$

TEST:

The **SNAP**^{[1],[2]} is run with several K_{MAX} and the blocking ratio B_R is computed.

$$B_R = \frac{number \ of \ blocking \ events}{number \ of \ requests}$$

With the growth of K_{MAX} , the B_R saturates. Thus, if \hat{K}_{MAX} is in the saturation region, the results don't henance the frequency of the blocking events and **results are good**.

R_{MAX} results to be: **1** (95%), **2**(99%), **3**(100%) for **N=2 4** (95%), **8**(99%), **25-40**(100%) for **N=3 6** (95%), **18-25**(99%), **37-45**(100%) for **N=4,5**

TEST OF RESULTS

The **SNAP** is used to validate the results. It is run with the *CM* matrices and several values of K_{MAX} .

- It can be observed that for:
- **N=2,3**: 99% and 100% are more confident
- **N=4,5**: all the percentiles provides reliable results

SNAP results 0.25 0.2 0.2 0.15 0.1 0.050

CONCLUSION

- A finer analysis based on randomly generated networks to refine α and find the better priority principle
- Using the algorithm to **study** the **variation of** K_{MAX} in function of the network parameters

BIBLIOGRAPHY

[1] M. Cantono, et. al. "Potentialities and Criticalities of Flexible-Rate Transponders in DWDM Networks: A Statistical Approach," JOCN. 8, A76-A85 (2016)

[2] V. Curri et. al. "Elastic all-optical networks: a new paradigm enabled by the physical layer. How to optimize network performances?" JLT 2016

