

Digital Nonlinear Equalization

for Long-Haul Optical Transmission Systems

Fernando P. Guiomar

Supervisor: Prof. Armando Humberto Moreira Nolasco Pinto

Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal Instituto de Telecomunicações - Pólo de Aveiro, Portugal

Who am I?

- So many names!
 - Fernando Pedro Pereira Guiomar

Who am I?

- So many names!
 - Fernando Pedro Pereira Guiomar
- I did my PhD on Digital Nonlinear Equalization for Optical Transmission Systems
 - Instituto de Telecomunicações and University of Aveiro, Portugal.

Who am I?

- So many names!
 - Fernando Pedro Pereira Guiomar
- I did my PhD on Digital Nonlinear Equalization for Optical Transmission Systems
 - Instituto de Telecomunicações and University of Aveiro, Portugal.

- Other things I like to do:
 - Football, music, cinema, travelling...

Outline

• Summary of my PhD Thesis Work;

- Review of Digital Backpropagation;
- Frequency Domain Volterra Series Nonlinear Equalizer;
- Time Domain Volterra Series Nonlinear Equalizer;
- Multi-Carrier Digital Backpropagation.
- Some Open Topics on Nonlinear Equalization;

• The FLEX-ON Project;

- Main Scientific Objectives;
- Dissemination and Public Engagement.

Review of Digital Backpropagation

- Effective linear+nonlinear compensation requires channel inversion techniques;
 - Signal propagation in the direct fiber direction can be described by:

$$\frac{\partial A_{x/y}}{\partial z} = -\frac{\alpha}{2}A_{x/y} - i\frac{\beta_2}{2}\frac{\partial^2 A_{x/y}}{\partial^2 t} + i\frac{8}{9}\gamma\left(|A_x|^2 + |A_y|^2\right)A_{x/y},$$

- Effective linear+nonlinear compensation requires channel inversion techniques;
 - Signal propagation in the reverse fiber direction can be described by:

$$-\frac{\partial A_{x/y}}{\partial z} = +\frac{\alpha}{2}A_{x/y} + i\frac{\beta_2}{2}\frac{\partial^2 A_{x/y}}{\partial^2 t} - i\frac{8}{9}\gamma\left(|A_x|^2 + |A_y|^2\right)A_{x/y},$$

- Effective linear+nonlinear compensation requires channel inversion techniques;
 - Signal propagation in the reverse fiber direction can be described by:

$$-\frac{\partial A_{x/y}}{\partial z} = +\frac{\alpha}{2}A_{x/y} + i\frac{\beta_2}{2}\frac{\partial^2 A_{x/y}}{\partial^2 t} - i\frac{8}{9}\gamma\left(|A_x|^2 + |A_y|^2\right)A_{x/y}$$

• This corresponds to propagate the received signal through a **virtual fiber** with parameters with the opposite sign ($-\alpha$, $-\beta_2 e -\gamma$).

- Effective linear+nonlinear compensation requires channel inversion techniques;
 - Signal propagation in the reverse fiber direction can be described by:

$$-\frac{\partial A_{x/y}}{\partial z} = +\frac{\alpha}{2}A_{x/y} + i\frac{\beta_2}{2}\frac{\partial^2 A_{x/y}}{\partial^2 t} - i\frac{8}{9}\gamma\left(|A_x|^2 + |A_y|^2\right)A_{x/y}$$

• This corresponds to propagate the received signal through a **virtual fiber** with parameters with the opposite sign ($-\alpha$, $-\beta_2 e -\gamma$).

• This method can be digitally applied at the receiver-side for universal impairment compensation;

- Effective linear+nonlinear compensation requires channel inversion techniques;
 - Signal propagation in the reverse fiber direction can be described by:

$$-\frac{\partial A_{x/y}}{\partial z} = +\frac{\alpha}{2}A_{x/y} + i\frac{\beta_2}{2}\frac{\partial^2 A_{x/y}}{\partial^2 t} - i\frac{8}{9}\gamma\left(|A_x|^2 + |A_y|^2\right)A_{x/y}$$

• This corresponds to propagate the received signal through a **virtual fiber** with parameters with the opposite sign ($-\alpha$, $-\beta_2 e -\gamma$).

- This method can be digitally applied at the receiver-side for universal impairment compensation;
- Equalization performance and computational efficiency strongly depend on the numerical method used to apply DBP.

Backpropagation Split-Step Fourier Method

BP-SSFM has been the most widely used numerical method to solve DBP;

Backpropagation Split-Step Fourier Method

BP-SSFM has been the most widely used numerical method to solve DBP;

Backpropagation Split-Step Fourier Method

BP-SSFM has been the most widely used numerical method to solve DBP;

• If spatial and temporal resolutions are sufficiently high, BP-SSFM enables to **fully** compensate all the deterministic impairments.

4 / 27 A. N. Pinto, S. B. Amado, N. J. Muga and F. P. Guiomar, **``Equalization of Fiber Impairments Using High-Speed** Digital Signal Processing,'' in Proc. ICTON, Cartagena, Spain, June, 2013. (invited paper)

Inverse Volterra Series Transfer Function

3.1) Analytical Description

DBP alternative: third-order Volterra series expansion of the inverse NLSE in frequency-domain:

$$\tilde{A}_{x/y}(\omega, z-L_s) \approx \underbrace{K_1(\omega, L_s)\tilde{A}_{x/y}(\omega, z)}_{K_1(\omega, L_s)} + \Gamma(\omega, L_s) \iint K_3(\omega, \omega_j, \omega_k) \tilde{P}(\omega_j, \omega_k, z) \tilde{A}_{x/y}(\omega + \omega_j - \omega_k, z) \partial \omega_j \partial \omega_k,$$

linear term

3rd-order nonlinear term

DBP alternative: third-order Volterra series expansion of the inverse NLSE in frequency-domain:

$$\tilde{A}_{x/y}(\omega, z-L_s) \approx \underbrace{K_1(\omega, L_s)\tilde{A}_{x/y}(\omega, z)}_{\text{linear term}} + \underbrace{\Gamma(\omega, L_s) \iint K_3(\omega, \omega_j, \omega_k) \tilde{P}(\omega_j, \omega_k, z) \tilde{A}_{x/y}(\omega + \omega_j - \omega_k, z) \partial \omega_j \partial \omega_k}_{3^{\text{rd}} \text{-order nonlinear term}},$$

where $\tilde{P}(\omega_i, \omega_k, z)$ includes the inter-polarization crosstalk,

 $\tilde{P}(\omega_j, \omega_k, z) = \tilde{A}_x(\omega_k, z)\tilde{A}_x^*(\omega_j, z) + \tilde{A}_y(\omega_k, z)\tilde{A}_y^*(\omega_j, z),$

• **DBP alternative**: **third-order Volterra series expansion** of the inverse NLSE in frequency-domain:

$$\tilde{A}_{x/y}(\omega, z - L_s) \approx \underbrace{K_1(\omega, L_s)\tilde{A}_{x/y}(\omega, z)}_{\text{linear term}} + \underbrace{\Gamma(\omega, L_s) \iint K_3(\omega, \omega_j, \omega_k) \tilde{P}(\omega_j, \omega_k, z) \tilde{A}_{x/y}(\omega + \omega_j - \omega_k, z) \partial \omega_j \partial \omega_k}_{3^{\text{rd-order nonlinear term}}},$$

where $ilde{P}(\omega_j,\omega_k,z)$ includes the inter-polarization crosstalk,

$$\tilde{P}(\omega_j, \omega_k, z) = \tilde{A}_x(\omega_k, z)\tilde{A}_x^*(\omega_j, z) + \tilde{A}_y(\omega_k, z)\tilde{A}_y^*(\omega_j, z),$$

 $K_1(\omega, z)$ is the inverse linear kernel,

$$K_1(\omega, z) = \exp\left(rac{lpha}{2}L_s - irac{eta_2}{2}\omega^2 z
ight),$$

• **DBP alternative**: **third-order Volterra series expansion** of the inverse NLSE in frequency-domain:

$$\tilde{A}_{x/y}(\omega, z - L_s) \approx \underbrace{K_1(\omega, L_s)\tilde{A}_{x/y}(\omega, z)}_{\text{linear term}} + \underbrace{\Gamma(\omega, L_s) \iint K_3(\omega, \omega_j, \omega_k) \tilde{P}(\omega_j, \omega_k, z) \tilde{A}_{x/y}(\omega + \omega_j - \omega_k, z) \partial \omega_j \partial \omega_k}_{3^{\text{rd}-order nonlinear term}},$$

where $ilde{P}(\omega_j,\omega_k,z)$ includes the inter-polarization crosstalk,

$$\tilde{P}(\omega_j, \omega_k, z) = \tilde{A}_x(\omega_k, z)\tilde{A}_x^*(\omega_j, z) + \tilde{A}_y(\omega_k, z)\tilde{A}_y^*(\omega_j, z),$$

 $K_1(\omega, z)$ is the inverse linear kernel,

$$K_1(\omega, z) = \exp\left(\frac{\alpha}{2}L_s - i\frac{\beta_2}{2}\omega^2 z\right),$$

 $K_3(\omega,\omega_i,\omega_k)$ is the inverse nonlinear kernel,

$$K_3(\omega,\omega_j,\omega_k) = \frac{1 - \exp\left(\alpha L_s - i\beta_2(\omega_k - \omega)(\omega_k - \omega_j)L_s\right)}{-\alpha + i\beta_2(\omega_k - \omega)(\omega_k - \omega_j)},$$

and $\Gamma(\omega,z)$ is a one-dimensional frequency-dependent nonlinear term,

$$\Gamma(\omega, z) = -i\xi \frac{8}{9}\gamma K_1(\omega, z).$$

VSNE - 2D Representation

• The Volterra series nonlinear equalizer in frequency domain is based on an entry-wise product of $N \times N$ matrices:

$$\tilde{\mathbf{N}}_{\mathbf{x}/\mathbf{y}}(\omega_n, z) = \mathbf{K}_{\mathbf{3}}(\omega_n) \circ \tilde{\mathbf{P}}(z) \circ \tilde{\mathbf{A}}_{\mathbf{x}/\mathbf{y}}(\omega_n, z)$$

• Highly parallel implementation, but with $O(N^2)$ complexity per processed sample.

6 / 27 F. P. Guiomar, J. D. Reis, A. L. Teixeira and A. N. Pinto, "Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer," Optics Express, vol.20, no.2, pp.1360-1369, 2012.

Inverse Volterra Series Transfer Function

3.2) Experimental Results

VSNE - Experimental Setup

 Experimental setup of a 100G PM-QPSK experiment, carried out in collaboration with Politecnico di Torino, Italy, in the framework of the EURO-FOS project:

Main features:

- Single-channel PM-QPSK @ 120 Gb/s;
- Optical Nyquist pulse shaping;
- Propagation over NZDSF spans with 100 km each;
- Sampling @ 50 Gsa/s ~1.6 samples per symbol.

• Single-channel 120 Gb/s PM-QPSK transmission over an NZDSF link:

8 / 27 F. P. Guiomar et al, "Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission," Optics Express, vol.21, no.1, pp.276–288, 2013.

• Single-channel 120 Gb/s PM-QPSK transmission over an NZDSF link:

• The single-polarization DBP-SSFM and DBP-VSTF increase the nonlinear tolerance by \sim 1 dB;

• Single-channel 120 Gb/s PM-QPSK transmission over an NZDSF link:

- The single-polarization DBP-SSFM and DBP-VSTF increase the nonlinear tolerance by \sim 1 dB;
- Another 0.7 dB is obtained by the dual-polarization models, with negligible added complexity;
- The DBP-SSFM and DBP-VSTF are shown to yield similar accuracy.

• Single-channel 120 Gb/s PM-QPSK transmission over an NZDSF link:

- The single-polarization DBP-SSFM and DBP-VSTF increase the nonlinear tolerance by \sim 1 dB;
- Another 0.7 dB is obtained by the dual-polarization models, with negligible added complexity;
- The DBP-SSFM and DBP-VSTF are shown to yield similar accuracy.
- But, can we reduce the complexity of the DBP-VSTF?

Frequency Domain VSNE

4.1) Analytical Description

VSNE - 3rd Order Kernel

- Interesting symmetries can be exploited to avoid replication of operations;
 - \bullet Some of the symmetries are also shared with the $\tilde{A}_{x/y}$ matrices.
- ullet The K_3 pattern strongly depends on the accumulated dispersion;
- ullet The real part of K_3 is maximum at the **iXPM+iSPM contribution**.

VSNE - Symmetric Reconstruction

• Starting from the iXPM contribution (main diagonal + n-th column), the K_3 kernel can be reconstructed from its symmetric column/diagonal pairs:

- The full VSNE kernel is then decomposed into a set of N_K parallel frequency-domain filters;
 - **symVSNE**: complexity is reduced from $O(N^2)$ to $O(N_kN)$;
- **simVSNE**: constant-coefficient approximation, **numerical complexity is** $O(N_k)$.

 10 / 27
 F. P. Guiomar and A. N. Pinto, "Simplified Volterra Series Nonlinear Equalizer for Polarization-Multiplexed Coherent Optical Systems," IEEE/OSA Journal of Lightwave Technology, vol. 31, no. 23, pp. 3879–3891, 2013.

Backpropagation using VSNE-based Equalizers

• DBP implementation using CDE and VSNE for linear and nonlinear compensation:

Backpropagation using VSNE-based Equalizers

• DBP implementation using CDE and VSNE for linear and nonlinear compensation:

- The VSNE module is **applied in parallel** with CDE;
 - The performance is improved by perturbing the CDE output with a **nonlinear error signal**.

Backpropagation using VSNE-based Equalizers

• DBP implementation using CDE and VSNE for linear and nonlinear compensation:

- The VSNE module is **applied in parallel** with CDE;
 - The performance is improved by perturbing the CDE output with a **nonlinear error signal**.
- The VSNE can be subdivided into a set of N_k parallel simVSNE equalizers.
 - Nonlinear equalization becomes an highly granular add-on;
 - Easier trade-off between performance and complexity, depending on the DSP resources.

Frequency Domain VSNE

4.2) Simulation and Experimental Results

simVSNE - Filter Dimension and Computational Effort

• Simulation results for a 20×80 km 224 Gb/s PM-16QAM transmission system:

Number of CMs per sample:

N_k	symVSNE		simVSNE	
	N = 32	N = 128	N = 32	N = 128
1	6	6	6	6
2	134.9	519	17.6	17.9
3	247.6	1015.2	28.9	29.7
4	346.3	1495.8	39.7	41.4

12 / 27 F. P. Guiomar et al, "Simplified Volterra Series Nonlinear Equalizer by Intra-Channel Cross-Phase Modulation Oriented Pruning", in Proc. ECOC, paper We.3.C.6, London, 2013.

simVSNE - Filter Dimension and Computational Effort

• Simulation results for a 20×80 km 224 Gb/s PM-16QAM transmission system:

The simVSNE error is negligible for low-dispersion fibers;

simVSNE - Filter Dimension and Computational Effort

• Simulation results for a 20×80 km 224 Gb/s PM-16QAM transmission system:

- The simVSNE error is negligible for low-dispersion fibers;
- With large β_2 the iXPM-like regions in the VSNE kernel tend to become **narrower**;
- Still, for small N_k , the constant-coefficient assumption remains valid!

Laboratorial Setup

- 100G PM-64QAM transmission system implemented in collaboration Politecnico di Torino and Istituto Superiore Mario Boella, Italy:
 - 124.8 Gb/s PM-64QAM signal;
 - Recirculating loop composed of 2imes54.44 km of PSCF (150 μm^2);
 - 10 WDM channels spaced by 50 GHz;
 - Digital Nyquist pulse shaping.

13 / 27 A. Nespola *et al*, "1306-km 20x124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b.km)/s/Hz using 1.15 samp/symb DAC", Opt. Express, vol.22, no.2, 2014.

simVSNE - Experimental Demonstration

• BER performance of 124.8 Gb/s PM-64QAM after linear and nonlinear equalization:

14 / 27 F. P. Guiomar et al, "Transmission of PM-64QAM over 1524 km of PSCF using Fully-Blind Equalization and Volterra-Based Nonlinear Mitigation", in Proc. ECOC, paper We.3.3.3, Cannes, September, 2014.

simVSNE - Experimental Demonstration

• BER performance of 124.8 Gb/s PM-64QAM after linear and nonlinear equalization:

14 / 27 F. P. Guiomar et al, "Transmission of PM-64QAM over 1524 km of PSCF using Fully-Blind Equalization and Volterra-Based Nonlinear Mitigation", in Proc. ECOC, paper We.3.3.3, Cannes, September, 2014.

simVSNE - Experimental Demonstration

• BER performance of 124.8 Gb/s PM-64QAM after linear and nonlinear equalization:

- The simVSNE is able to match the BP-SSF maximum performance (1 span per step);
- Maximum reach is increased from 1198 km to 1524 km (27% increase);
- Optimum power in increased from -7 dBm to -5 dBm (2 dB increase in nonlinear tolerance).

14 / 27 F. P. Guiomar et al, "Transmission of PM-64QAM over 1524 km of PSCF using Fully-Blind Equalization and Volterra-Based Nonlinear Mitigation", in Proc. ECOC, paper We.3.3.3, Cannes, September, 2014.

• Computational effort comparison between BP-SSF, symVSNE and simVSNE:

$N_{ m steps}$	N	SSF	symVSNE		simVSNE	
		$N_{\rm CMs}$	N_k	$N_{\rm CMs}$	N_k	$N_{\rm CMs}$
28	64	523	4	6113	4	772
14	64	266	4	3063	4	392
7	64		5	1794	5	238
4	128		8	3316	8	213
3	128		9	2709		
2	256		15	6164		
1	256		19	3658		

• The SSF method requires a minimum of 14 steps, yielding 266 CMs;

• Computational effort comparison between BP-SSF, symVSNE and simVSNE:

$N_{\rm steps}$	N	SSF	symVSNE		simVSNE	
		$N_{\rm CMs}$	N_k	$N_{\rm CMs}$	N_k	$N_{\rm CMs}$
28	64	523	4	6113	4	772
14	64	266	4	3063	4	392
7	64		5	1794	5	238
4	128		8	3316	8	213
3	128		9	2709		
2	256		15	6164		
1	256		19	3658		

• The SSF method requires a minimum of 14 steps, yielding 266 CMs;

• The symVSNE can be applied with only 1 step, but incurs higher complexity;

Computational effort comparison between BP-SSF, symVSNE and simVSNE:

$N_{ m steps}$	N	SSF	symVSNE		simVSNE	
		$N_{\rm CMs}$	N_k	$N_{\rm CMs}$	N_k	$N_{\rm CMs}$
28	64	523	4	6113	4	772
14	64	266	4	3063	4	392
7	64		5	1794	5	238
4	128		8	3316	8	213
3	128		9	2709		
2	256		15	6164		
1	256		19	3658		

- The SSF method requires a minimum of 14 steps, yielding 266 CMs;
- The symVSNE can be applied with only 1 step, but incurs higher complexity;
- The simVSNE provides an optimized balance between latency and complexity:
 * 4 steps and 213 CMs.

15 / 27 F. P. Guiomar et al, "Fully-Blind Linear and Nonlinear Equalization for 100 G PM-64QAM Optical Systems", IEEE/OSA JLT, vol. 33, no. 7, pp. 1265-1274, 2015. (invited paper)

Time Domain VSNE

5.1) Analytical Description

• Frequency-domain iXPM filter - simVSNE[0]:

$$\tilde{A}_{x/y}^{\mathrm{iXPM}}(\omega_n) = \kappa \left[\tilde{A}_{x/y}^{\mathrm{CD}}(\omega_n) \left(2\sum_{k=1}^N |\tilde{A}_{x/y}(\omega_k)|^2 + \sum_{k=1}^N |\tilde{A}_{y/x}(\omega_k)|^2 - \tilde{\chi}(\omega_n) \right) + \tilde{A}_{y/x}^{\mathrm{CD}}(\omega_n) \sum_{k=1}^N \tilde{A}_{x/y}(\omega_k) \tilde{A}_{y/x}^*(\omega_k) \right],$$

16 / 27F. P. Guiomar, S. B. Amado, C. S. Martins and A. N. Pinto, "Time Domain Volterra-Based Digital Backpropagation
for Coherent Optical Systems", IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 15, pp. 1265--1274, 2015.

• Frequency-domain iXPM filter - simVSNE[0]:

$$\tilde{A}_{x/y}^{\text{iXPM}}(\omega_n) = \kappa \left[\tilde{A}_{x/y}^{\text{CD}}(\omega_n) \left(2\sum_{k=1}^N |\tilde{A}_{x/y}(\omega_k)|^2 + \sum_{k=1}^N |\tilde{A}_{y/x}(\omega_k)|^2 - \tilde{\chi}(\omega_n) \right) + \tilde{A}_{y/x}^{\text{CD}}(\omega_n) \sum_{k=1}^N \tilde{A}_{x/y}(\omega_k) \tilde{A}_{y/x}^*(\omega_k) \right]$$

• Applying an inverse Fourier transform, we obtain a **time-domain equivalent**:

$$\begin{aligned} A_{x/y}^{\text{iXPM}}(t_n) &= \kappa \Bigg[A_{x/y}^{\text{CD}}(t_n) \Bigg(2P_{x/y}(t_n) + P_{y/x}(t_n) \Bigg) + A_{y/x}^{\text{CD}}(t_n) P_{xy/yx}(t_n) - \chi_{x/y}(t_n) \Bigg], \\ P_{x/y}(t_n) &= \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathbf{K}} \left| A_{x/y}(t_k) \right|^2, \qquad P_{xy}(t_n) = \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathbf{K}} A_x(t_k) A_y^*(t_k), \qquad P_{yx}(t_n) = P_{xy}^*(t_n), \end{aligned}$$

16 / 27 F. P. Guiomar, S. B. Amado, C. S. Martins and A. N. Pinto, **``Time Domain Volterra-Based Digital Backpropagation** for Coherent Optical Systems'', IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 15, pp. 1265–1274, 2015.

• Frequency-domain iXPM filter - simVSNE[0]:

$$\tilde{A}_{x/y}^{\text{iXPM}}(\omega_n) = \kappa \left[\tilde{A}_{x/y}^{\text{CD}}(\omega_n) \left(2\sum_{k=1}^N |\tilde{A}_{x/y}(\omega_k)|^2 + \sum_{k=1}^N |\tilde{A}_{y/x}(\omega_k)|^2 - \tilde{\chi}(\omega_n) \right) + \tilde{A}_{y/x}^{\text{CD}}(\omega_n) \sum_{k=1}^N \tilde{A}_{x/y}(\omega_k) \tilde{A}_{y/x}^*(\omega_k) \right],$$

• Applying an inverse Fourier transform, we obtain a **time-domain equivalent**:

$$A_{x/y}^{\text{iXPM}}(t_n) = \kappa \left[A_{x/y}^{\text{CD}}(t_n) \left(2P_{x/y}(t_n) + P_{y/x}(t_n) \right) + A_{y/x}^{\text{CD}}(t_n) P_{xy/yx}(t_n) - \chi_{x/y}(t_n) \right],$$

$$P_{x/y}(t_n) = \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathcal{K}} \left| A_{x/y}(t_k) \right|^2, \qquad P_{xy}(t_n) = \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathcal{K}} A_x(t_k) A_y^*(t_k), \qquad P_{yx}(t_n) = P_{xy}^*(t_n),$$

• where the summation (weighting) interval, K, is of adjustable width, $N_{\rm NLE},$

$$\mathbf{K} = \left\{ k: \ n - \left\lceil \frac{N_{\mathrm{NLE}}}{2} \right\rceil + 1 \le k \le n + \left\lfloor \frac{N_{\mathrm{NLE}}}{2} \right\rfloor \right\}$$

16 / 27 F. P. Guiomar, S. B. Amado, C. S. Martins and A. N. Pinto, "Time Domain Volterra-Based Digital Backpropagation for Coherent Optical Systems", IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 15, pp. 1265–1274, 2015.

• Frequency-domain iXPM filter - simVSNE[0]:

$$\tilde{A}_{x/y}^{\text{iXPM}}(\omega_n) = \kappa \left[\tilde{A}_{x/y}^{\text{CD}}(\omega_n) \left(2\sum_{k=1}^N |\tilde{A}_{x/y}(\omega_k)|^2 + \sum_{k=1}^N |\tilde{A}_{y/x}(\omega_k)|^2 - \tilde{\chi}(\omega_n) \right) + \tilde{A}_{y/x}^{\text{CD}}(\omega_n) \sum_{k=1}^N \tilde{A}_{x/y}(\omega_k) \tilde{A}_{y/x}^*(\omega_k) \right].$$

• Applying an inverse Fourier transform, we obtain a **time-domain equivalent**:

$$A_{x/y}^{\text{iXPM}}(t_n) = \kappa \left[A_{x/y}^{\text{CD}}(t_n) \left(2P_{x/y}(t_n) + P_{y/x}(t_n) \right) + A_{y/x}^{\text{CD}}(t_n) P_{xy/yx}(t_n) - \chi_{x/y}(t_n) \right],$$

$$P_{x/y}(t_n) = \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathcal{K}} \left| A_{x/y}(t_k) \right|^2, \qquad P_{xy}(t_n) = \frac{1}{N_{\text{NLE}}} \sum_{k \in \mathcal{K}} A_x(t_k) A_y^*(t_k), \qquad P_{yx}(t_n) = P_{xy}^*(t_n),$$

• where the summation (weighting) interval, K, is of adjustable width, $N_{\rm NLE},$

$$\mathbf{K} = \left\{ k: \ n - \left\lceil \frac{N_{\mathrm{NLE}}}{2} \right\rceil + 1 \le k \le n + \left\lfloor \frac{N_{\mathrm{NLE}}}{2} \right\rfloor \right\}$$

• An identical procedure can be done for the remaining simVSNE $\{K\}$ filters, yielding the weighted VSNE (W-VSNE) filter array.

16 / 27 F. P. Guiomar, S. B. Amado, C. S. Martins and A. N. Pinto, "Time Domain Volterra-Based Digital Backpropagation for Coherent Optical Systems", IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 15, pp. 1265–1274, 2015.

Time Domain VSNE

5.2) Experimental Results

Weighted VSNE - Laboratorial Setup

• Laboratorial setup of a **ultra-long-haul 400G PM-16QAM transmission system** implemented in collaborations CPqD, Campinas, Brazil:

- 2×32 Gbaud PM-16QAM signal;
- Propagation over a recirculating loop composed of 5×ULA (112 μm^2) spans with 50 km each;
- 5 WDM superchannels spaced by 75 GHz;
- Digital Nyquist pulse shaping.

Estimated maximum reach as a function of the DBP step-size:

• The standard SSFM is not adequate for low-complexity DBP.

18 / 27 S. B. Amado, F. P. Guiomar, et al, "Low Complexity Advanced DBP Techniques for Ultra-Long-Haul 400G Transmission Systems," submitted to IEEE/OSA JLT, 2015. (invited paper)

- The standard SSFM is not adequate for low-complexity DBP.
- The W-SSFM shows a significantly increased tolerance to large step-sizes;

- The standard SSFM is not adequate for low-complexity DBP.
- The W-SSFM shows a significantly increased tolerance to large step-sizes;

- The standard SSFM is not adequate for low-complexity DBP.
- The W-SSFM shows a significantly increased tolerance to large step-sizes;
- The W-VSNE[1] outperforms the W-SSFM in the medium performance region;

- The standard SSFM is not adequate for low-complexity DBP.
- The W-SSFM shows a significantly increased tolerance to large step-sizes;
- The W-VSNE[1] outperforms the W-SSFM in the medium performance region;
- Even with a step-size of 1000 km (6 steps in total) the W-VSNE[1] enables to extended the signal reach by 550 km.

Multi-Carrier Digital Backpropagation

6.1) Numerical Implementation

Coupled Equations DBP - Numerical Implementation

• Numerical implementation of the CE-DBP approach using the asymmetric SSFM:

• SPM is compensated by the standard SSFM over each subcarrier;

19 / 27 F. P. Guiomar et al, "Multi-Carrier Digital Backpropagation for 400G Optical Superchannels," to be submitted to IEEE/OSA JLT, 2015. (invited paper)

Coupled Equations DBP - Numerical Implementation

• Numerical implementation of the CE-DBP approach using the asymmetric SSFM:

- SPM is compensated by the standard SSFM over each subcarrier;
- XPM is compensated by introducing coupling terms in the nonlinear step;
 - * A new operator, $\hat{\mathcal{W}}^{(m)}(\omega)$, is responsible for the walk-off effect between subcarriers.

Coupled Equations DBP - Numerical Implementation

• Numerical implementation of the CE-DBP approach using the asymmetric SSFM:

- SPM is compensated by the standard SSFM over each subcarrier;
- XPM is compensated by introducing coupling terms in the nonlinear step;
 - * A new operator, $\hat{\mathcal{W}}^{(m)}(\omega)$, is responsible for the **walk-off effect** between subcarriers.
- Complexity is **similar** to that of intra-channel compensation of each subcarrier.

Multi-Carrier Digital Backpropagation

6.2) Experimental Results

Multi-Carrier DBP - Laboratorial Setup

 Laboratorial setup for metro and ultra-long-haul 400G PM-16QAM transmission system implemented in collaborations CPqD, Campinas, Brazil:

- ULH 2×32 Gbaud and 3×21 Gbaud PM-16QAM signal;
 - * 5 WDM superchannels in a 75 GHz slot 5.33 b/s/Hz;
- Metro 3×14 Gbaud PM-64QAM signal;
 - * 1 superchannel in a 50 GHz slot 8 b/s/Hz;

400G Superchannel Configurations

• Superchannel configurations for PM-16QAM:

- Net spectral efficiency of 5.33 b/s/Hz;
- Designed for long-haul and ultra-long-haul applications.

400G Superchannel Configurations

• Superchannel configurations for PM-16QAM:

- Net spectral efficiency of 5.33 b/s/Hz;
- Designed for long-haul and ultra-long-haul applications.
- Superchannel configuration for PM-64QAM 3×14 GBaud:

- Net spectral efficiency of 8 b/s/Hz;
- Designed for metro and long-haul applications with high spectral efficiency.

21 / 27 F. P. Guiomar et al, "Multi-Carrier Digital Backpropagation for 400G Optical Superchannels," to be submitted to IEEE/OSA JLT, 2015. (invited paper)

DBP Impact on ULH 400G Performance

• Ultra-long-haul 400G propagation performance:

- after CDE, triple-carrier 400G provides an increased reach of approximately 6%;
 - good agreement with previous works based on simulation and EGN model predictions;

DBP Impact on ULH 400G Performance

• Ultra-long-haul 400G propagation performance:

- after CDE, triple-carrier 400G provides an increased reach of approximately 6%;
 - good agreement with previous works based on simulation and EGN model predictions;

DBP Impact on ULH 400G Performance

• Ultra-long-haul 400G propagation performance:

- after CDE, triple-carrier 400G provides an increased reach of approximately 6%;
 - good agreement with previous works based on simulation and EGN model predictions;
- after CE-DBP, the reach improvement provided by the triple-carrier 400G is now of 11%;
 - CE-DBP performance improves with increasing number of backpropagated subcarriers.
- The overall reach enhancement over CDE is of 1250 km (26%) and 1600 km (32%) for the dual- and triple-carrier 400G superchannels, respectively.

MC-DBP: Experimental Results for PM-64QAM

• DBP optimization and performance of 400G superchannels based on PM-64QAM:

MC-DBP: Experimental Results for PM-64QAM

• DBP optimization and performance of 400G superchannels based on PM-64QAM:

MC-DBP: Experimental Results for PM-64QAM

• DBP optimization and performance of 400G superchannels based on PM-64QAM:

• The required DBP spatial resolution is very **similar** to that found for ULH based on PM-16QAM.

Open Research Topics on Nonlinear Equalization

Static + Adaptive Nonlinear Equalization

- A practical implementation of DBP requires some adaptation capabilities;
 - Uncertainties on the link parameters;
 - Non-homogenous power/gain profile;
 - Other temporal variations due to temperature, bending...
- Fully adaptable DBP would be too complex and very difficult to converge;
 - The same happens with linear equalization (static + adaptive);

- The bulk estimated nonlinearities can be compensated with a static equalizer;
- A low complexity **adaptive equalizer** (Volterra?) optimizes the initial solution.

DBP for Subcarrier Multiplexing

- What is the **best performance vs complexity** trade-off?
 - Low symbol-rate per subcarrier ⇒ reduced DBP complexity per subcarrier;
 - Many subcarriers ⇒ many DBP processing chains;
 - How to efficiently deal with FWM?

- Too many coupled equations may be suboptimum;
 - Too many DBP chains lots of FFT/IFFT pairs;
 - A fully frequency domain approach can be beneficial (VSNE?).

DBP for Subcarrier Multiplexing

- What is the **best performance vs complexity** trade-off?
 - Low symbol-rate per subcarrier ⇒ reduced DBP complexity per subcarrier;
 - Many subcarriers ⇒ many DBP processing chains;
 - How to efficiently deal with FWM?

- Too many coupled equations may be suboptimum;
 - Too many DBP chains lots of FFT/IFFT pairs;
 - A fully frequency domain approach can be beneficial (VSNE?).
- The most efficient solution is likely to be based on an hybrid CE/TF-DBP approach;
 - Tradeoff between complexity per DBP chain and number of DBP chains;

DBP for Subcarrier Multiplexing

- What is the **best performance vs complexity** trade-off?
 - Low symbol-rate per subcarrier ⇒ reduced DBP complexity per subcarrier;
 - Many subcarriers ⇒ many DBP processing chains;
 - How to efficiently deal with FWM?

- Too many coupled equations may be suboptimum;
 - Too many DBP chains lots of FFT/IFFT pairs;
 - A fully frequency domain approach can be beneficial (VSNE?).
- The most efficient solution is likely to be based on an hybrid CE/TF-DBP approach;
 - Tradeoff between complexity per DBP chain and number of DBP chains;

DBP for Subcarrier Multiplexing

- What is the **best performance vs complexity** trade-off?
 - Low symbol-rate per subcarrier ⇒ reduced DBP complexity per subcarrier;
 - Many subcarriers ⇒ many DBP processing chains;
 - How to efficiently deal with FWM?

- Too many coupled equations may be suboptimum;
 - Too many DBP chains lots of FFT/IFFT pairs;
 - A fully frequency domain approach can be beneficial (VSNE?).
- The most efficient solution is likely to be based on an hybrid CE/TF-DBP approach;
 - Tradeoff between complexity per DBP chain and number of DBP chains;
- FWM will be dominant: Not all subcarriers need to be taken into account.

The FLEX-ON Project

• Flexible Optical Networks – Time Domain Hybrid QAM: DSP and Physical Layer Modelling;

• H2020 project: Marie Skłodowska-Curie Individual Fellowship;

"The Marie Skłodowska-Curie actions, named after the double Nobel Prize winning Polish-French scientist famed for her work on radioactivity, support researchers at all stages of their careers, irrespective of nationality. Researchers working across all disciplines, from life-saving healthcare to 'blue-sky' science, are eligible for funding. The MSCA also support industrial doctorates, combining academic research study with work in companies, and other innovative training that enhances employability and career development'.

- 24 months: October 2015 October 2017;
- Includes a secondment (3 months) with CISCO Photonics.
- Divided into 5 WPs:
 - WP1 Digital modulation techniques;
 - WP2 Simulation tools and DSP subsystems;
 - WP3 NL prediction and equalization tools;
 - WP4 Laboratorial implementation, test and validation;
 - WP5 Management and dissemination;

What are the Main Objectives?

• Scientific Objectives:

- Optimization of **digital modulation techniques** for spectrally efficient transmission with **high bit-rate granularity**, low energy consumption and robust signal propagation;
- Development of efficient DSP subsystems for flexible optical transceivers;
- Development of NL prediction and equalization tools;
- Implementation of a laboratorial testbed for validation purposes;
- Provide **new skills and career opportunities** for the ER and potentiate **new collaboration opportunities for the host organisation**.

What are the Main Objectives?

• Scientific Objectives:

- Optimization of **digital modulation techniques** for spectrally efficient transmission with **high bit-rate granularity**, low energy consumption and robust signal propagation;
- Development of efficient DSP subsystems for flexible optical transceivers;
- Development of NL prediction and equalization tools;
- Implementation of a laboratorial testbed for validation purposes;
- Provide **new skills and career opportunities** for the ER and potentiate **new collaboration opportunities for the host organisation**.

Dissemination and Public Engagement:

- Participate in the European Researchers' Night;
- Organize an **MSCA seminar** to promote the Marie Skłodowska-Curie Actions among undergraduate students and early stage researchers;
- Design a **website** with both technical and simplified materials;
- Dissemination of optics and photonics at high-schools;
- Organize an yearly workshop on flexible optical transceivers in POLITO;
- Organize a workshop at an international conference.

Thanks for your attention!

fernando.guiomar@polito.it

