

Mitigation of the Impact of Receiver Imperfections in DPSK Systems Using Electronic Equalization

G. Bosco, A. Coster, V. Curri

Optcom - Dipartimento di Elettronica Politecnico di Torino - Torino - Italy

www.optcom.polito.it

Motivation

OPTCOM

DPSK is one of the most promising modulation formats

- Advantages in terms of sensitivity: 3 dB on OSNR
- Larger dispersion robustness
- Higher tolerance to fiber nonlinerarities
- Possibility to upgrade to multilevel (DQPSK)
- Advantages are paid in terms of technology overhead
- More sensitive to transmitter and receiver imperfections
 - Winzer *et al*, IEEE PTL, Sep 2003
 - Bosco et al, PTL, Feb 2005
 - Lize et al, paper Mo3.2.5, ECOC 2006

Need for countermeasures

- DPSK modulation: considered setup structure
- Receiver imperfections: 4 analyzed parameters
- The considered electronic equalizer
- Simulative analyis
 - Propagation
 - Equalizer optimization
 - Performance estimate
- Results

Conclusions

DPSK setup OPTCOM $R_{\rm R} = 10 \text{ Gbps}$ 2nd order **2** γ_π Diff **PRBS** SuperGaussian ASE precoder driver gen $B_0 = 40 \text{ GHz}$ noise Optica CW filter laser **OSNR** in $B_n = 10 \text{ GHz}$ **MZM** Asymmetric Balanced 5th order Mach-Zehnder Phtodetectors Bessel Interferometer $B_{e} = 7.5 \text{ GHz}$ $E_{I}(t-\tau)$ R_l $E_{l}(t)$ E(t)V(t)Electric (-)filter

 $E_2(t-\tau_2)$

 $E_2(t)$

IAMZI

 R_2

Laser center frequency offset percentage

 Center frequency of interferometer is not aligned to laser frequency

DPSK receiver imperfections: $\delta \tau$

Mismatch AMZI delay

The delay of the longer arm is not exactly

equal to the bit duration T_B

 Problems in component production or enviromental/age drift

$$\delta \tau = \frac{T_{AMZI} - T_B}{T_B} \cdot 100$$

• Expressed as percentage of bit duration T_B

Detector amplitude imbalance

- The two overall responses of photodetectors are not identical
- Responsivity of first PD₁ is different than R of PD₂

$$\beta = \frac{R_1 - R_2}{R_1 + R_2}$$

Insertion loss of fiber arm 1 is different than insertion of arm 2

ECOC 2006 – Paper Th2.5.4

DPSK receiver imperfections: $\delta \Phi$

Detector phase imbalance

$$\delta \phi = (\tau_1 - \tau_2) \cdot R_B \cdot 100$$

- The two overall delays are not identical
- Optical delay between AMZI output an BPD input
- Electrical delay between BPD output and sum input
- Expressed as percentage of bit duration

The Equalizer

$$H(f) = \sum_{i=0}^{N} C_i e^{-j2\pi f \cdot i\Delta T}$$

ECOC 2006 - Paper Th2.5.4

Copyright 2006 OPTCOM

ECOC 2006 – Paper Th2.5.4

The analysis: method

- ▶ We simulated the system setup using OptSim[™]
- We varied the receiver imperfection within a reasonable range
- For each value we optimized the filter coefficients
- Optimization was done in order to maximize a rectangular eye-opening mask

Copyright 2006 OPTCOM

- We applied the optimized filter
- OSNR (measured in $B_n = 10 \text{ GHz}$) was varied in order to obtain target BER = 10^{-12} (No FEC)
- We evaluated the BER with and without EE using a semi-analytical technique based on Karhunen-Loève (KL) series expansion
- For each value of imperfection parameter: OSNR required for BER = 10⁻¹²
- We varied the number of taps, best trade-off: N_{tap}=15
- We considered $\Delta T = T_b/2$ and $\Delta T = T_b/3$

OSNR laser center frequency offset percentage

OSNR vs. mismatch in the interferometer delay

OSNR vs. detector amplitude imbalance β

14

OSNR detector phase imbalance

Conclusions

- Tolerances to DPSK receiver imperfections can be effectively improved using FFE electronic equalization
- In particular, good efficiency for
 - BPD unbalancing
 - AMZI center frequency offset
- Best tradeoff efficiency-complexity: $N_{taps} = 15$ and $\Delta T = T_B/2$
- Further investigations: FFE efficiency on degradation due to combined effects of propagation and RX imperfections

Acknowledgments

- This work has been supported by the EU FP6
 Network of Excellence e-Photone
 The author would like to thank RSoft Design
 - Inc. for providing the optical system
 - simulation tool OptSimTM
- For any further questions, please, contact the authors by e-mail to curri@polito.it