OFC 2016 - Paper Th2A.45

Bit-rate maximization for elastic transponders operating in WDM uncompensated amplified links

Rixin Li^(1,2), Andrea Carena⁽¹⁾, Vittorio Curri⁽¹⁾

⁽¹⁾DET, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy ⁽²⁾Consortium GARR, Via dei Tizii, 6, Roma, Italy

www.optcom.polito.it

SUMMARY

We maximize the bit-rate for elastic transponders operating on WDM uncompensated amplified links. We consider pure QAM modulation formats granting only discrete rate vs quality of lightpath tradeoff, and compare performances to time-division (TDHMF) and quadraure-division (FlexPAM) hybrid modulation formats, enebling continuty in rate choice. We show that with proper countermeasures hybrid format are reaching perfomances close to the GN-model predictions

HYBRID FORMATS

Time-Division Hybrid Modulation Formats (TDHMF)

			$N_{\rm BpS} = 4\log_2(M)$	$N_{\rm BpS} = 4\log_2(M) + 1$	$N_{\rm BpS} = 4\log_2(M) + 2$	$N_{\rm BpS} = 4\log_2(M) + 3$
	-		$\underbrace{ \kappa = 1}$	$\overset{\kappa = 0.75}{\bullet}$	$\overset{\kappa = 0.5}{\longleftarrow}$	
od-:		Ι	M	M $2M$	M $2M$	M $2M$
(r	\mathbf{Q}	M	M $2M$	M $2M$	M $2M$
	Id	Ι	$\bigstar \qquad \qquad$	$\bigstar = 0.75 $	$\kappa = 0.5$	
	lout	Q	M	M $2M$	M $2M$	M $2M$
loc	with		M	M $2M$	M $2M$	M 2 M
y-I	ΡΙ	Ι	M	M $2M$ M	2M M	2M M $2M$
	ith	\mathbf{Q}	M	M $2M$ M	2M M	2M M $2M$
	W		$\bigstar \mathbf{k} = 1 \qquad \mathbf{k}$	=0.75	$\kappa = 0.5$	$\kappa = 0.25$

Quadrature-Division Hybrid Modulation Formats (FlexPAM)

Benefits of PR tuning after L=1000 km (N_s=10)

BACK-TO-BACK

Four working-mode:

- 1. Same power (PR=0)
- Same Euclidean distance (d1=d2)
- Same BER ($\psi_1 = \psi_2$) 3.
- Min BER (ψ_{min}) 4.

CONCLUSIONS

We maximized the bit-rate per channel for a 1000 km SSMF uncompensated amplified link operated with a WDM system on a 50 GHz WDM grid. We show that using pure QAM formats bit-rate is limited to R_b =200 Gbps achieved using PM-16QAM. While using hybrid modulation formats we can operate at R_b =225 Gbps using either TDHMF or FlexPAM. We also tested the benefits of interleaving and fine-tuning of power ratio to mitigate nonlinear effects showing that FlexPAM can achieve a maximum bit-rate of 250 Gbps. We show benefits on maximum reach as well

REFERENCES

- Cisco Visual Networking Index: Forecast and Methodology, 2013-2018, June 2014. G. Wellbrock, T. J. Xia, "How Will Optical Transport Deal With Future Network Traffic Growth?", ECOC 2014, Paper Th.1.2.1 Ori Gerstel *et al.*, "Time Elastic Optical Networking: A New Dawn for the Optical Layer?," *Comm.*
- 3.
- Mag., S12-S20. Feb 2013. A. Ahamad *et al.,"*A Transmission Layer Aware Network Design for Fixed and Flexible Grid...," A. Anamad *et al.*, A transmission Layer Aware Network Design for Fixed and Flexible Grid...,' ICTON 2015, Paper Tu.D3.1
 Wei-Ren Peng *et al.*," Hybrid QAM Transmission Techniques...," OECC 2011, 824-825.
 V. Curri *et. al.*, "Time-Division Hybrid Modulation Formats: TX Operation Strategies...," OFC 2014, paper Tu3A.2.Inizio modulo
 Li Rixin *et. al.*, "Flex-PAM modulation formats for...," Fotonica 2015, Paper P1_7.
 A. Carena *et al.*," Modeling of the Impact of Nonlinear Propagation Effects in..." JLT, 30, 1524-1539, 2012.

ACKNOWELDGEMENTS

CISCO

This work was supported by Cisco Systems within a SRA contract and the optical OptSim simulator was **COPTCOM** provided by Synopsys within a research collaboration

SYNOPSYS[®]

