

EFFECTIVENESS OF DIGITAL BACK-PROPAGATION AND SYMBOL-RATE OPTIMIZATION IN COHERENT WDM OPTICAL SYSTEMS

A. NESPOLA⁽¹⁾, Y. JIANG⁽²⁾, L. BERTIGNONO⁽¹⁾, G. BOSCO⁽²⁾, <u>A. CARENA⁽²⁾</u>, S.M. BILAL⁽²⁾, F. FORGHIERI⁽³⁾, P. POGGIOLINI⁽²⁾

(1) Istituto Superiore Mario Boella, Torino - Italy
(2) OPTCOM Optical Communications Group – Politecnico di Torino, Torino - Italy
(3) Cisco Photonics Italy, Vimercate - Italy

MOTIVATION

- In long-haul system, maximum reach is limited by non-linear effects
- Symbol Rate Optimization (SRO) has been shown to be effective in non-linearity mitigation
 - Recent experiments and theoretical analysis have demonstrated the potential advantage of Multi-Carrier (MC) systems
- Digital Back Propagation (DBP) at receiver is another technique to mitigate non-linearity
- These techniques are based on quite different mechanisms:
 <u>How do they combine their effectiveness?</u>

Can they be synergistic?

OUTLINE

Theoretical analysis

- Application of the EGN-model to evaluate the effectiveness of SRO, DBP and of their joint use
- Experimental analysis
 - Application of DBP to a Multi-Carrier experiment
- Conclusions

THEORETICAL ANALYSIS: THE EGN MODEL

- The Enhanced GN-model allows for precise evaluation of Non-Linear Interference (NLI)
 - Properly account NLI dependence on modulation format and symbol rate
 - A Symbol Rate Optimization (SRO) can be applied to minimize NLI
 - Neither the GN-model nor advanced XPM models were able to demonstrate SRO
- EGN-model also allows to evaluate ultimate limits of DBP

IDEAL DBP LIMITS

OPTIMUM SYMBOL RATE

From EGN-model, we can derive an optimum R_s

$$R_{s,opt} = \sqrt{\frac{2}{\pi |\beta_2| N_{span} L_{span}}}$$

- Link parameters
 - SMF fiber
 - L_{span}=100 km
 R_{s,opt}=2.3 GBaud
 N_{span}=50
- Optimum symbol rate is too small for a practical implementation as a single carrier
- A multi-carrier solution is needed
 - Assuming an aggregate symbol rate R_s= 32 GBaud, we consider each channel split in 14 subcarriers

NLI MITIGATION: G_{NLI} REDUCTION

NLI MITIGATION: SRO

NLI MITIGATION: SRO & DBP

NLI MITIGATION: SRO & DBP

NLI MITIGATION: SRO & DBP

MAXIMUM REACH GAIN

How does NLI mitigation translate into Maximum Reach Gain?

Maximum Reach Gain [dB] = $\frac{\text{NLI mitigation [dB]}}{3}$

PM-QPSK on C-band

PM-16QAM	on C-band
-----------------	-----------

	NLI Mitigation [dB]	MR Gain [dB]	MR Gain [%]
SRO	1.80	0.60	15%
DBP	1.23	0.41	10%
SRO & DBP	2.70	0.90	23%

	NLI Mitigation [dB]	MR Gain [dB]	MR Gain [%]
SRO	1.05	0.35	8%
DBP	1.17	0.38	9%
SRO & DBP	2.01	0.67	17%

TRANSMISSION EXPERIMENT SETUP

SN_MZM: single-nested Mach-Zehnder mod. DN_MZM: double-nested Mach-Zehnder mod.

GEQ: Gain Equalizing programmable filter PS: synchronous Polarization Scrambler AOM: Acousto-Optic Modulator (used as switch) TOF: Tunable Optical Filter

PSCF fiber kindly provided by

A. Nespola, et al., "Experimental Demonstration of Fiber Nonlinearity Mitigation in a WDM Multi-Subcarrier Coherent Optical System," ECOC, Mo.3.6.3, Valencia, 2015.

TRANSMISSION EXPERIMENT: SC VS. MC

- We started out with a 19 channel WDM comb, with channel spacing 37.5 GHz, for a total WDM bandwidth of 710 GHz
- PM-QPSK channels with roll-off=0.05

RECEIVER DSP

PTCOM

 The 8x8 (real) LMS is necessary to correct for I/Q delay skew at the transmitter modulator (otherwise 4x4 is enough)

G. Bosco, et al., "Impact of the Transmitter IQ-Skew in Multi-Subcarrier Coherent Optical Systems," OFC, W4A.5, Anaheim, 2016.

BACK-TO-BACK CHARACTERIZATION

 To perform a meaningful comparative test over the long-haul, it is important that the btb is the same

Single carrier at 32 GBaud

P. Poggiolini et al., "Impact of Low-OSNR Operation on the Performance of Advanced Coherent Optical Transmission Systems", ECOC, Mo.4.3.2, Cannes, 2014.

Multi-Carrier: 8x 4 GBaud and 16x2 GBaud

Multi-Carrier: 8x 4 GBaud and 16x2 GBaud

DBP with 5 steps per span

CONCLUSIONS

- Theoretical analysis combining SRO and DBP shows that the two techniques are potentially synergistic
- Our ULH experiment confirm some advantages of combining SRO and DBP
- SRO deliver all the expected NLI mitigation
- DBP underperform its expected benefit
 - DBP is vulnerable when applied in low-OSNR conditions
 - Polarization effects also hinder DBP effectiveness
- In higher-OSNR systems, like PM-16QAM, DBP may result more effective

THANK YOU!

andrea.carena@polito.it www.optcom.polito.it

This work was supported by Cisco within a SRA contract.

