

ON THE ACCUMULATION OF NON-LINEAR INTERFERENCE IN MULTI-SUBCARRIER SYSTEMS

ANDREA CARENA AND FERNANDO GUIOMAR

OPTCOM Optical Communications Group – Politecnico di Torino, Torino - Italy

- History and Motivation
- Observation of experimental results and comparison with EGN model predictions
- Extension to general cases
- Conclusions

- Accumulation of non-linear interference (NLI) is an "old" topic
 - A. Carena et al., "Evaluation of the dependence on system parameters of non-linear interference accumulation in multi-span links", ECOC 2012 Proceedings, paper We.2.C.6.
- Super-linear growth of NLI was found
 - Controversial results over the rate of accumulation
 - F. Vacondio et al., "On nonlinear distortions of highly dispersive optical coherent systems", Optics Express, vol. 20, no. 2, 16 Jan. 2012, pp. 1022-1032.
 - O.V. Sinkin et al., "Scaling of nonlinear impairments in dispersion-uncompensated long-haul transmission", OFC 2012 Proceedings, paper OTuAA.2.
 - G. Bosco et. al, "Experimental investigation of nonlinear interference accumulation in uncompensated links", IEEE Photonics Technology Letters, vol. 24, no. 14, 15 July 2012, pp. 1230-1232.

What has changed meanwhile?

MOTIVATION

- The Enhanced GN model (EGN) has been introduced
- EGN shows that Symbol-Rate Optimization can reduce NLI
 Optimal symbol-rate are in the range of 2 to 4 Gbaud
- Multi-Subcarrier system is a promising technique to implement SRO reducing non-linear propagation impact
 - Recent experiment have demonstrated that SRO can be achieved

What happens to NLI when a MSC signal is propagated?

 The GN model predicts a coherent interaction between NLI generated in each span

 Accumulation of NLI in multi-span links predicted by GN model shows a super-linear growth

$$P_{NLI} \approx P_{NLI}^{(1)} \cdot N_{span}^{1+\varepsilon}$$

- EGN-model properly consider the initial dispersion transient
 - NLI accumulation does not exactly follow this law

TRANSMISSION EXPERIMENT SETUP

SN_MZM: single-nested Mach-Zehnder mod. DN_MZM: double-nested Mach-Zehnder mod. GEQ: Gain Equalizing programmable filter PS: synchronous Polarization Scrambler AOM: Acousto-Optic Modulator (used as switch) TOF: Tunable Optical Filter VOA: Variable Optical Attenuator

F. Guiomar et al., "Effectiveness of symbol-rate optimization with PM-16QAM subcarriers in WDM transmission", OFC 2017 Proceedings, paper WE.J.3. F. Guiomar et al., "Nonlinear mitigation on subcarrier-multiplexed PM-16QAM optical systems", Optics Express, vol. 25, No. 4, 20 Feb. 2017.

SOPTCOM

SYSTEM PARAMETERS

TRANSMITTER

- Nyquist-WDM PM-16QAM
- 31 channels Δf = 28 GHz
- Aggregated R_s=24 Gbaud
- MSC transmission from 1 carrier to 12 carriers
 - 1x24 Gbaud
 - 2x12 Gbaud
 - 4x6 Gbaud
 - 6x4 Gbaud
 - 8x3 Gbaud
 - 12x2 Gbaud

LINK

- PSCF fiber
- L=108 km
- D=20.12 ps/nm/km
- α=0.162 dB/km
- RECEIVER
 - Ideal CPE \rightarrow EGN-QPSK
 - All details on cited papers
 - Measurements from 3rd to 10th recirculation

From BER to SNR

$$SNR_{meas} = \Psi^{-1}(BER)$$

From SNR to P_{NLI}

$$SNR_{meas} = \frac{P_{TX}}{P_{ASE} + P_{B2B} + P_{NLI}}$$

*P*_{*B2B*} takes into account back-to-back penalties

 1×24 GBaud

 1×24 GBaud

P_{NLI} vs N_{span}: 2 Sub-Carriers

P_{NLI} vs N_{span}: 4 Sub-Carriers

P_{NLI} vs N_{span}: 6 Sub-Carriers

P_{NLI} vs N_{span}: 8 Sub-Carriers

P_{NLI} vs N_{span}: 12 Sub-Carriers

- What happen when varying the number of channels?
- What happen when varying channel spacing?
- What happen when changing fiber type?
- We need an error parameter to characterize the difference between EGN coherent and EGN incoherent

$$\operatorname{Error} = 10 \cdot \log_{10} \left(\frac{P_{NLI,EGNcoh}}{P_{NLI,EGNinc}} \right)$$

abs(Error) < 0.5 dB: PSCF

abs(Error) < 0.5 dB: NZDSF

IMPACT ON SYSTEM PERFORMANCE

MAXIMUM REACH

Inaccuracies in NLI estimation are mitigated by a factor of 1/3 when used to determine system performances

Error : PSCF

12 Sub-Carriers

$\Delta f=28 \text{ GHz}$

Δf =50 GHz

PSCF Fiber: Max Error

 $\Delta f=28 \text{ GHz}$

NZDSF Fiber: Max Error

OM

 $\Delta f=28 \text{ GHz}$

CONCLUSIONS

- Experimental observations show that NLI accumulation in multi-subcarrier system with low symbol-rate is almost incoherent (linear)
- The "EGN-incoherent" model can predict NLI with good approximation
 - For high dispersion and high channel count it overestimate P_{NLI}
- This behavior allows for a simplified NLI evaluation
 - Faster evaluation based on single span EGN model
 - It could be employed in physical layer aware network planning tools

THANK YOU!

andrea.carena@polito.it www.optcom.polito.it

This work was supported by the European Commission through a Marie Sklodowska-Curie individual fellowship, project Flex-ON (653412).

SYNOPSYS[®] The OptSim simulator was supplied by Synopsys.

