R 12TH, 2018 - SAN DIEGO

A STATISTICAL ASSESSMENT OF NETWORKING MERIT OF 2MxN WSS

MATTIA CANTONO¹, STEFANO PICIACCIA², ALBERTO TANZI², GABRIELE MARIA GALIMBERTI², BRIAN SMITH³, MARCELLO BIANCHI³, AND VITTORIO CURRI¹

¹ OPTCOM - DET - POLITECNICO DI TORINO - C.SO DUCA DEGLI ABRUZZI 24, 10129 TORINO, ITALY - MATTIA.CANTONO@POLITO.IT 2 CISCO PHOTONICS, VIA SANTA MARIA MOLGORA 48C, 20871 VIMERCATE, ITALY 3 LUMENTUM 61 BILL LEATHEM DRIVE, OTTAWA, ONTARIO K2P 0P7 CANADA

OUTLINE

- Introducing 2MxN WSS: motivations and use cases
- Assessing the impact of 2MxN through SNAP
- Analyzed scenario
- Results
- Conclusions and future work

XXN WSS-BASED ROADMS	
PROS	CONS
 Simple architecture Better cost per A/D port scaling Better density than previous solution 	 Low probability of wavelength contention over directions sharing WSS
What is the impact of this part	ial contention at network level?
OPTCOM	7

SCENARIO: HIGH NODE DEGREE METRO NETWORK

- 40 nodes
- 107 edges
- 5.35 average node degree
- I < Node degree < 15</p>
- K_{max} = 200 min-hop routing First fit wavelength assignment
- N_w = 48, 96 wavelength per fiber on 50 GHz or 100 GHz bandwidth respectively Average node-to-node distance 13 km

- NODE LEVEL CONFIGURATION
- We consider N = 12, 24, 48 for N_w = 48, and N = 24, 32, 48, 96 for N_w = 96.
- We consider full A/D capability (ADC) at each node, i.e. at each node, $N_w\, channels\, can be added/dropped in each direction.$
- $\ensuremath{\cdot}$ We assume full ADC to fairly compare architectures with different
- A/D port count This means that $N_{\rm W}/N$ devices times its degree needs to be deployed in each node.

E.g. in a 2 degree node, with 48 A/D ports devices and 96 channels grid, 4 devices are needed to have full ADC
We verify *a posteriori* the number of devices actually needed to reach a target BP given N and N_w.

OPTCOM

CONCLUSIONS AND FUTURE WORK

- 2MxN WSSs represent a good option for high degree count nodes.
- Their limited wavelength contention does not have a relevant impact at network level for devices with A/D ports count N <= 50% N_w.
- Device count analyses show that deploying small port counts WSSs does not require the deployment of a significantly additional number of devices with respect to higher port count solutions when operating a target BP<20%

OPTCOM

