

| OUTLINE |
| :--- |
| - Introducing 2 MxN WSS: motivations and use cases |
| - Assessing the impact of 2 MxN through SNAP |
| - Analyzed scenario |
| - Results |
| - Conclusions and future work |
|  |
|  |
| OPTCOM |



| 2xxN WSS-BASED ROADMS |  |
| :--- | :--- |
| PROS | CONS |
| - Simple architecture <br> - Better cost per A/D port <br> scaling <br> - Better density than previous <br> solution | Low probability of wavelength <br> contention over directions <br> sharing WSS |
| What is the impact of this partial contention at network level? |  |
| EOPTCOM | 7 |



| THE STATISTICAL NETWORK ASSESSMENT PROCESS |  |
| :---: | :---: |
|  | - Monte Carlo based algorithm <br> - Random traffic patterns are loaded to the network up to saturation <br> - Metrics are saved for each allocation process, then statistically characterized against traffic realizations. <br> - We focus on blocking probability vs allocated number of lightpaths |
|  | Mremer |


| SCENARIO: HIGH NODE DEGREE METRO NETWORK |
| :--- | :--- |

## NODE LEVEL CONFIGURATION

- We consider $\mathbf{N}=12,24,48$ for $\mathbf{N}_{\mathrm{w}}=48$, and $\mathbf{N}=24,32,48,96$ for $\mathbf{N}_{\mathrm{w}}=$ 96.
- We consider full A/D capability (ADC) at each node, i.e. at each node, $\mathbf{N}_{\mathrm{w}}$ channels can be added/dropped in each direction.
- We assume full ADC to fairly compare architectures with different A/D port count
- This means that $\mathbf{N}_{\mathrm{w}} / \mathbf{N}$ devices times its degree needs to be deployed in each node.
- E.g. in a 2 degree node, with 48 A/D ports devices and 96 channels grid, 4 devices o have full ADC
- We verify a posteriori the number of devices actually needed to reach a target BP given N and $\mathrm{N}_{\mathrm{W}}$

OOPTCOM




| CONCLUSIONS AND FUTURE WORK |
| :--- | :--- |
| - 2 MxN WSSs represent a good option for high degree count |
| nodes. |
| - Their limited wavelength contention does not have a |
| relevant impact at network level for devices with A/D |
| ports count $\mathbf{N}=50 \% \mathbf{N}_{\mathrm{w}}$. |
| - Device count analyses show that deploying small port |
| counts WSSs does not require the deployment of a |
| significantly additional number of devices with respect |
| to higher port count solutions when operating a target |
| BP<20\% |


nodes.

- Their limited wavelength contention does not have a ports cound at network level for devices with A/D

Device count analyses show that deploying small port counts WSSs does not require the deployment of a significantly additional number of devices with respect to higher port count solutions when operating a target BP<20\%
(2OPTCOM



| MxN WSS-BASED ROADMS |  |
| :---: | :---: |
| PROS | CONS |
| - Better noise performance than multicast switches-based ROADM <br> - No EDFA Array needed due to lower insertion losses <br> - Improved filtering thanks to inherent filtering capabilities of WSS | - Cost and complexity increase with degree port count $M$ due to technological constraints |
| (OPTCOM * B. Smith, "Next Generation CDC | DM," ECOC 2017- Sep. 18, 2017. |




