

THE IMPACT of POLARIZATION MODE DISPERSION on OPTICAL DUOBINARY TRANSMISSION

A. Carena, V. Curri, R. Gaudino, P. Poggiolini

Optical Communications Group - Politecnico di Torino

Torino - ITALY OptCom@polito.it www.optcom.polito.it

- The optical duobinary data-coding is a promising technology for the implementation of ultra-dense WDM systems with spectral efficiency close to the Nyquist limit.
- Working at bit-rates as high as 40 Gbit/s, Polarization-Mode Dispersion (PMD) could strongly impair system performance.
- The purpose of this work is to compare the impact of PMD on optical duobinary with respect to its impact on NRZ in a OC-768 FEC-inclusive scenario.

Bit-Rate: 40 Gbit/s (OC-768)

- with RS(255,239), 7% overhead: 42.65 Gbit/s
- with RS(255,223), 14% overhead: 45.72 Gbit/s
- Monte-Carlo runs: 10000
- Simulated bits for each run: 4096
- Q evaluated over triplets of bits in order to avoid the ISI effect

- Simulation performed using the optical system simulator OptSim
- PMD emulator based on the well-known waveplates model
 - Equivalent link length: 500 km
 - **PMD** values analyzed: 0.1 to 0.3 ps/ \sqrt{km}
 - Monte-Carlo simulations with 10,000 runs for each PMD value
 - Same PMD realizations for NRZ and duobinary

NRZ system layout

Optical duobinary system layout

Filter optimization

Optical filters have been used both at TX and RX side

- It has been demonstrated that the TX filter is necessary in Ultra Dense WDM systems when channel spacing is less than 75 GHz, see POSTER P3.07 and also G.Bosco et al, "On the use of NRZ, RZ and CSRZ modulation at 40 Gbit/s with narrow DWDM channel spacing," JLT, Sep. 2002.
- Optical and electrical filters bandwidth have been optimized in a back-to-back configuration:
 - Optical filters shape: supergaussian, order 2
 - Electrical filters shape: Bessel
 - Optimized for WDM transmission with 50 GHz spacing
 - Only ASE noise and ISI impairments have been considered during optimization
- Maximum back-to-back Q values obtained:
 - 13.0 dB for NRZ

▶ 15.3 dB for Duobinary

Simulation results: Q vs DGD

Note the different flat top level due to different back-to-back performance
 Less Q values spreading, like for NRZ, indicates more PMD resilience

Simulation results: DGD distribution

It has been verified a good agreement with the theoretical predicted Maxwellian distribution of DGD values

Exponential fitting: NRZ

- Q values distributed following an exponential function
- Least square fitting of cumulative probability with an exponential function, in order to extend the evaluation below 10⁻⁴

Exponential fitting: duobinary

Given the same PMD value, the Q cumulative probability for duobinary shows a reduced slope with respect the NRZ one: this means stronger PMD impact
But duobinary presents better back-to-back performance

≡(O 2002

Cumulative probability density function

Out-of-service evaluation

- For a given Q value, the cumulative probability is the percentage of PMD realizations inducing a Q lower than that value
- Since each run is independent of each other, we can assume the percentage of runs as a percentage of time
 - Therefore, for a given Q value, the cumulative probability becomes the percentage of time with Q values lower than that level: fixing a minimum Q for system in-service we can evaluate the percentage of out-

of-service

Time of out-of-service

Percentage of out-of-service has been converted in minute per year for better understanding

E(O(2002 Pa

- The impact of PMD is stronger on duobinary than on NRZ.
- Due to its better intrinsic performance, duobinary may still result convenient in some conditions (like in the RS(255,239) scenario).
- When more powerful FEC codes, like RS(255,223), are used, the advantages of duobinary vanish and the use of NRZ may result more convenient.

Acknowledgements

This work has been partially supported by **CISCO Photonics** under a contract with Politecnico di Torino.

The authors would like to thank **Fabrizio Forghieri** and his collaborators for the helpful suggestions.

