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The Fronthauling architecture
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Digitizing one 20-MHz LTE channel

To “digitize” a 20-MHz LTE-A radio signal one needs:

Two I/Q DACs

Each of the them runs at 30.72 Msamples/s

The number of bits per sample is 15 (or higher)

The OFDM signal in radio should be generated in an 
“almost perfect” way, there is no possibility for clipping, 
since it would distort the radio spectrum, generating 
unwanted spurious radio frequencies

The resulting bit rate to be carried using a “digitized” 
approach is thus:

30.72 Msamples/s x 2 x 15 = 921.6 Mbit/s

CPRI adds some control words (overhead 16/15) and a 
line code (8B/10B) thus generating in the end a bit 
rate for each 20 MHz LTE channel equal to 1.23 Gbit/s
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An “advanced” future antenna site

In a near future, each antenna site may :

More than 3 “angular” sectors 

Today typically there are 3 sectors at 120 degrees each) 

More than one 20 MHz band on each sector

NxM MIMO

Assuming (just as an “advanced” example):

six sectors

three 20 MHz bands

8x8 MIMO 

one gets 144 “bands”, giving rise using CPRI to an 
enormous bit rate per antenna site equal to 

177 Gbit/s
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AN ALTERNATIVE 

APPROACH:

DSP-AGGREGATED 

FDMA-BASED 

FRONTHAULING
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Aggregation by Frequency Division Multiplexing
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Basically… an updated version of Radio over Fiber (RoF)

9

Electrical FDM aggregated signal

f

GFDM( f )

…

f1 f2 fN

)(tI in
Electrical 
domain

Directly 
Modulated 

Laser Optical Fiber

PIN/APD
photodiode

)(tIout

Radio over Fiber link

FDM 
De-aggregation

f

G1( f )
Spectrum for LTE 

signal 

(complex 
envelope )

#1

f

GN( f )Spectrum for LTE 
signal 

(complex 
envelope )

#N

Electrical 
domain

The FDM aggregation can 

be in principle obtained 

by using hardware radio-

frequency (RF) electrical 

I/Q modulators

Anyway, if the target is 
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How to perform aggregation?
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DSP-aggregated Fronthauling
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The DSP-aggregation principle
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In the original Huawei ECOC2015 experiment, 48 LTE 

signals were carried over approx. 1.5 GHz of electrical 

analog bandwidth

The CPRI approach would have required 

approximately 48x1.23Gbit/s ≈ 60 Gbit/s

This is the clear advantage of the new proposal

Comparison of CPRI and G.RoF

13

≈1.5 GHz

OUR EXPERIMENTS ON 

DSP-AGGREGATED FDMA FRONTHAULING

OPTIMIZATION OF THE 

SYSTEM PARAMETERS
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Using an off-line processing 
approach we demodulated each 
of the #N LTE channels and 
estimate the worst-case Error 
Vector Magnitude (EVM)

Off-line processing experimental setup
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OFDM 64-QAM

Fiber length = 37 km

EVM=8% is required by 

the LTE standard on 

64-QAM

Our presentation at
ECOC 2016 – Dusseldorf

Same conditions used
in this ICTON paper
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96 LTE-like channels

EVM=8%

ODN loss range
compliant with 
ITU-T PON specs
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In order to obtain the result presented at ECOC 2016 

we had to optimize several system parameters, and 

in particular:

1. Clipping factor to reduce signal Peak-to-Average-

Power Ratio (PAPR)

2. Simple nonlinearity compensation

3. Channels power equalization

Our ICTON paper is focused on these optimizations

Which were not presented at ECOC 2016

Parameters to be optimized
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The resulting DSP-aggregated signal 

has an amplitude distribution that is 

very close to a  Gaussian probability 

density function

Being the sum of many (such as 96) 

OFDM channels

That are already Gaussian-shaped

We define here the clipping factor as:

Where:

ss is the standard deviation of the 

DSP-aggregated Gaussian-like signal

Vpp is the peak to peak amplitude of 

the signal AFTER clipping

How to properly clip the signal

18

ppV

The clipping factor 

was the first 

parameter we 

optimized
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The link we used, being based on Mach-
Zehnder modulator (MZM) and direct-
detection, was intrinsically (mildly) 
nonlinear, due to the cos2(∙)
instantaneous response of the MZM

We want to introduce a correction of 
the nonlinearity in the DSP domain

But we want to keep it simple, avoiding 
Volterra’s series approach

We found that a simple cubic relation 
in DSP can highly reduce the impact of 
nonlinearities

How to compensate for the link nonlinearity
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3xCFxxcorr 

The nonlinear CF

factor was the second 

parameter we 

optimized

Clipping and nonlinearity compensation: WHERE?
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We experimentally 

investigated on where to 

apply the correction 

factors: transmitter or 

receiver side?
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Conclusion: the compensation at the RX gave 
better results, and we thus performed all our 
further experiments in this condition

CLIPPING and nonlinearity comp at TX or RX?
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Transmitter side Receiver side

(with 12 dB clipping also at TX)

Error Vector Magnitude (EVM) on the output channels

Optimized EVM vs. Optical Path Loss
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 96 LTE channels,

 20 MHz, OFDM 64-QAM

 Fiber length = 37 km

 +9dBm optical launched

power

Conclusion: optimization can be done at a given 
(reasonable) optical path loss, and then kept for 
all other operating conditions
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Particularly for the high 
number of channels, the 
aggregated FDM signal can 
occupy a large bandwidth, 
over which the direct-
detection channel is not flat 
in terms of:

Frequency transfer function

Receiver noise power 
spectral density

The resulting SNR (and thus 
EVM) per channel can be 
significantly different

Compensation of frequency dependence
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29 dB

27 dB 

optical path loss

EVM=8% 

acceptable threshold

Channel #92 is 

around 3.2 GHz

We need to perform a 
power equalization at the 
transmitter

… and again, keep it 
simple!

 We simply insert a multiplication with some proper multiplying ki

coefficients in the TX DSP aggregator block diagram

 The coefficient were evaluated using a min-max algorithm 

Minimization of the worst-case EVMi among all received channels

Proposed approach: DSP-based pre-emphasis
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Proposed approach: DSP-based pre-emphasis
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Tx PSD without Pre-emphasis Tx PSD with Pre-emphasis

Rx PSD with Pre-emphasis Rx EVM with Pre-emphasis

Example of application

26



14

Comments and Conclusion 
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RRH

We described the 

optimization procedure we 

inserted in a DSP-assisted 

FDM-aggregated 

fronthauling architecture

The obtained results (for 96 

aggregated channels) allow 

to envision transmission up 

to optical path losses (29dB) 

that are compliant with 

ITU-T class N1 for Passive 

Optical Network (PON) 
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