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Introduction

 What are flexible transceivers and why are they needed?

 Transceivers that enable operation at one of multiple data rates, by changing 

at least one parameter such as the modulation format, symbol rate or number of 

subcarriers used for an aggregate channel.  

 Flexibility realized using a common, fixed hardware configuration, with 

functionality selected via software commands.

 Motivations:

 Same transceiver can be used for different applications

 Increased efficiency in network planning

 Better exploitation of available resources

3

Reduction 

of costs
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Historical evolution of data rates

4

Winzer et al., JLT  vol. 35, p. 1099, 2017
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Historical evolution of data rates

 WDM with EDFA amplifiers

 5 THz available in the C-band

 100 channels with 50 GHz 

spacing

 Legacy direct-detection systems 

 low level of flexibility 

 Different hardware required for 

binary and multi-level formats

 Transmission reach increased 

using optical dispersion 

management

4

Winzer et al., JLT  vol. 35, p. 1099, 2017
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The “Coherent Revolution”

 Increased Transmission Rate
 High-order modulation formats (data rate x number of bits per symbol)

 Polarization-multiplexing (x 2 in transmission rate)

 Spectral shaping  reduced frequency spacing can be tolerated  potential 

increase in spectral efficiency (SE) and data rate

5
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The “Coherent Revolution”

 Increased Transmission Rate
 High-order modulation formats (data rate x number of bits per symbol)

 Polarization-multiplexing (x 2 in transmission rate)

 Spectral shaping  reduced frequency spacing can be tolerated  potential 

increase in spectral efficiency (SE) and data rate

 Increased Reach
 DSP algorithms for linear and nonlinear system impairments compensation

 Energy-efficient and nonlinearity-tolerant modulation formats

 Increased Flexibility
 Same hardware can be used to generate and detect different modulation 

formats

 No dispersion management needed

 Adaptive modulation techniques with fine granularity 

5
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Outline

6

1. Coherent transceivers architecture

2. Digital signal processing (DSP) algorithms

3. Standard QAM modulation formats

 Rate/reach trade-off 

 Flexibility

4. Advanced modulation techniques 

 Subcarrier multiplexing (SCM)

 Time-domain hybrid formats (TDHF)

 Multi-dimensional modulation formats

 Probabilistic shaping (PS)

5. Modulation format independent DSP algorithms
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1) Coherent transceivers architecture

7
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Dual-Polarization Coherent Transceiver
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Dual-polarization IQ modulator

 PBC: polarization 

beam combiner

 PR: polarization rotator

 𝑣𝐼,𝑥(𝑡), 𝑣𝑄,𝑥(𝑡): in-

phase and quadrature 

component of the 

driving signal for x-pol 

 𝑣𝐼,𝑦(𝑡), 𝑣𝑄,𝑦(𝑡): in-

phase and quadrature 

component of the 

driving signal for y-pol 

9

p/2

𝑣𝐼,𝑥(𝑡)

𝑣𝑄,𝑥(𝑡)

𝑣𝐼,𝑦(𝑡)
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𝐸𝐼,𝑦 𝑡 + 𝑗𝐸𝑄,𝑦(𝑡) ො𝑦

PBC

p/2

𝐸𝑄,𝑥(𝑡)

𝐸𝐼,𝑦(𝑡)

𝐸𝑄,𝑦(𝑡)

PR

CW 

laser
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Coherent Rx Optical Font-End

10

90-

degree

optical

hybrid

LO

Optical

signal

90-

degree

optical

hybrid

PBS

PBS  PS (t): power of the optical signal

 𝜙𝐷 𝑡 : phase of the optical 
signal

 PLO : LO power

 𝜙𝐿𝑂 𝑡 : LO phase noise

 𝛿𝑓: frequency offset between 
optical signal and LO

PBS: polarization beam splitter

𝐼𝐼𝑄 𝑡 = 𝐼𝐼 𝑡 + 𝑗𝐼𝑄 𝑡

= 4𝑅 𝑃𝑆(𝑡)𝑃𝐿𝑂𝑒
𝑗 2𝜋𝛿𝑓𝑡+𝜙𝐷 𝑡 −𝜙𝐿𝑂 𝑡

𝐼𝐼,𝑥 𝑡

𝐼𝑄,𝑥 𝑡

𝐼𝐼,𝑦 𝑡

𝐼𝑄,𝑦 𝑡
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DAC – Sampling speed

11

 fDAC = DAC speed (in samp/s)

 Ts= symbol time

 Maximum symbol rate: fDAC 

1 samp/symb

 BUT no shaping possible!

Sample

&

Hold

Lowpass

filter

Sample & hold + filter can be compensated for by DSP
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DAC – Resolution

 Maximum number of modulation levels limited by number of resolution bits

 Minimum number of bits @ 1 samp/symb: 

 Required number of bits @ 2 samp/symb: 

12

 2log M

4M  16M  64M 

 2log 3M 

Pfau, JLT, vol. 27, p. 989, 2009
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ADC – Sampling speed

 In order to avoid a performance degradation due to aliasing, the ADC sampling 

frequency fADC has to be higher than twice the bandwidth of the input signal.

 An additional antialiasing electrical filter 

may be needed before the ADC in order 

to reduce the bandwidth of the input 

signal.

 The distortions introduced on the useful 

signal by the bandwidth limitations of the 

Rx can be compensated for in the digital 

domain by the adaptive or static 

equalizers present in the DSP chain.

13

5-pole Bessel filter 

with 3-dB bandwidth 

equal to BRX
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Tx laser and LO – Laser linewidth

 Phase noise can be modeled as a Wiener process:

 the fi’s are independent and identically distributed 

random Gaussian variables with zero mean and variance

 Dn is the sum linewidth of Tx laser and local oscillator

 Ts is the symbol period.

 High-order formats 

are more impacted 

by phase noise

14

Pfau, JLT, vol. 27, p. 989, 2009

Modulation

format

Maximum 

tolerable

DnTs

Maximum

tolerable Dn

@ 10 Gbaud 

Maximum

tolerable Dn

@ 32 Gbaud 

Maximum

tolerable Dn

@ 64 Gbaud 

QPSK 4.110-4 4.1 MHz 13.1 MHz 26.2 MHz

16-QAM 1.410-4 1.4 MHz 4.5 MHz 9.0 MHz

64-QAM 4.010-5 400 kHz 1.3 MHz 2.6 MHz

256-QAM 8.010-6 80 kHz 256 kHz 512 kHz

k

k i

i

f


 

2 2f sT p n D 
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2) Digital signal processing algorithms
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Transmitter DSP

 Spectral shaping to increase SE Nyquist-WDM

 Pre-compensation of bandwidth limitations

 Pre-compensation of Mach-Zehnder modulator non-linear transfer function  

 Pre-compensation of propagation effects: CD and/or nonlinear interference (NLI)

16

bps FECs
bps FEC

n rR
SE n r

f f


   

D

Spectral efficiency (SE)

[bit/symb]

Khanna et al., PTL, vol. 28, p.752, 2016

Berenguer et al., JLT, vol. 34, p.1739, 2016

Roberts et al., JOCN, vol. 9, p. C12, 2017

Savory, Elec. Lett., vol. 42, p.407, 2006

Kamio et al., LEOS, p. MC1.2, 2008

Ghazisaiedi et al., ECOC, p. We.4.D.4, 2013

Rafique et al., JLT, vol. 33, p. 140, 2015

s

f
f

R


D
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High SE modulation: Nyquist-WDM

 Maximum information that can be 

transmitted by the WDM comb: 

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  

BWDM: total bandwidth of the WDM comb

rFEC: rate of the FEC code

nbps: number of bits per symbol
s

f
f

R


D
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 Rs can be increased by reducing 

the “oversampling factor” NSpS 

interference between spectral 

replica  need to use a proper 

anti-alias filter

18

Generation of a Nyquist-WDM signal

SpS

DAC
s

N

f
R 

DAC sampling speed (samp/s)

Number of samples per symbol

samp/symb15.1

Gsamp/s96.11

Gbaud4.10







SpS

DAC

s

N

f

R

Nespola et al., Opt. Exp., vol. 22, p.1796, 2014

shaping 

filter
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Receiver DSP – Block diagram

20
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Adaptive equalizer

21

Constant modulus algorithm (CMA) Least mean square (LMS)

 Update of the equalizer weights

based  on the minimizations of 

error signals using the 

stochastic gradient algorithm.
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Carrier phase estimation (CPE)

Viterbi & Viterbi

22

Blind phase search (BPS)

Pfau et al., JLT, vol. 27, p. 989, 2009
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3) Standard PM-QAM modulation formats

23
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Ideal back-to-back performance

24

s
bps FEC

R
SE n r

f
  

D

Spectral efficiency
 If nbps increases, SE increases 

but the back-to-back performance

gets worse  reduction in reach
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Rate/reach trade-off

25

 Analyzed setup:

 Nyquist-WDM transmission at Rs = 32 Gbaud, with spacing Df=1.05 Rs (roll-off 0.05)

 Bandwidth of the WDM comb: 5 THz

 SNR margin of 3 dB w.r.t. the ideal 

back-to-back performance

 EDFA only amplification with F = 5 dB

 PSCF or SSMF with 100-km span length
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Rate/reach trade-off

25

 Analyzed setup:

 Nyquist-WDM transmission at Rs = 32 Gbaud, with spacing Df=1.05 Rs (roll-off 0.05)

 Bandwidth of the WDM comb: 5 THz

 SNR margin of 3 dB w.r.t. the ideal 

back-to-back performance

 EDFA only amplification with F = 5 dB

 PSCF or SSMF with 100-km span length

Results obtained using 

the EGN model

Poggiolini et al., JLT, 

vol. 35, p. 458, 2017
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 Distance between the 

operating point and the 

asymptotic performance 

 FEC overhead

Rate/reach trade-off
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 Distance between the 

operating point and the 

asymptotic performance 

 FEC overhead

 Complexity increases 

with modulation format 

order and FEC overhead

Rate/reach trade-off
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Flexibility – Adaptive modulation format

 nbps can be changed only in discrete steps

28

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  

FEC with 20% overhead
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Flexibility – Adaptive modulation format

 nbps can be changed only in discrete steps

28

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  

FEC with 20% overhead
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Flexibility - Adaptive code rate

29

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  
20% overhead
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Flexibility - Adaptive code rate

29

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  
20% overhead

30% overhead
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Flexibility - Adaptive code rate

29

 The required hardware effort for 

implementation of several FEC 

encoders and decoders in order to 

support the various code rates is 

significant and may lead to an 

undesired increase of transceiver 

cost 

tot

b WDM

s
bps WDM FEC

WDM
bps FEC

R SE B

R
n B r

f

B
n r

f

  

    
D

  

15% overhead

20% overhead

30% overhead

Zhou, Comm. Mag., vol. 51, p. 41, 2013
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4) Advanced modulation techniques

30
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Fixed symbol-rate transceivers

 The analog electronic and optoelectronic parts of a transceiver are usually 

designed for a specific target symbol rate  it is reasonable to assume that a 

cost-efficient realization of a flexible transceiver operates at a fixed symbol rate. 

 Several approaches exist to realize flexible variation of the three key 

parameters of a transceiver: 

 spectral efficiency

 bit rate

 reach

31

Most promising approaches:

 Subcarrier multiplexing

 Time-domain hybrid formats

 4D modulation formats

 Probabilistic shaping
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• PM-QPSK

• 24 Gbaud

• roll-off 0.1

• 80-km SMF

32

Subcarrier multiplexing

Qiu et al., Opt. Exp., vol. 22, p. 18770,  2014
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 19 channel WDM comb, with channel spacing 37.5 GHz, 

for a total WDM bandwidth of 710 GHz

33

An experimental demonstration

f

single-carrier

16-subcarriers

8-subcarriers

P. Poggiolini, JLT, vol. 34, p. 1872,  2016
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Reach curves at BER 10-2
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Launched Power per subcarrier [dBm]

12.4 % reach increase14180 km

12620 km

P. Poggiolini et al., JLT, 

vol. 34, p. 1872,  2016

 108-km PSCF, EDFA amplification

 0.1-dB back-to-back penalty from single SC to 16 SCs 
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 Increase of system flexibility, by adjusting the 

number of subcarriers, modulation formats 

and spectral occupation. 

38

Flexibility

Zhuge et al., Opt. Exp., vol. 22, p. 2278, 2014Rahman et al., OFC 2016, p. Tu3K.5

32 Gbaud, 37.5 frequency spacing

QAM order 

of each SC

Net data rate 

[Gb/s]

SE 

[bit/s/Hz]

Max reach 

[km]

4-4-4-4 100 2.67 1045

4-8-8-4 125 3.33 1045

4-16-16-4 150 4.00 1045

8-8-8-8 150 4.00 665

8-16-16-8 175 4.67 665

16-16-16-16 200 5.33 380
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Time-domain Hybrid Formats (TDHF)

39

1 1 2 2 2b b sM N M N R
SE

M BW

 
  

 

1 1 2 21 2
1 2

1 1 2 2 1 1 2 2 1 1 2 2

b b

b b

M N M NMP MPM
BER SNR SNR

M N M N M M P M P M M P M P

     
       

           

 M1/2 = number of symbols of first/second 

modulation format in each TDHF frame

 M = M1+M2= TDHF frame length 

 Nb1/b2 = number of bits per symbol of 

first/second modulation format

 BW = bandwidth occupancy of the 

channel

QPSK 16QAM QPSK 16QAM…. ….

4 4 16 16…. ….4 4 16 16

Ts

Ts
Zhou et al., OFC 2012, p. PDP5C.6

Zhuge et al. , JLT, vol. 31, p. 2621, 2013

Curri et al., OFC 2014, p. Tu3A.2

 P1/2 = average power of first/second format

 For QPSK:  
1

erfc
2 2

SNR
x
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Design parameters

 The choice of M1 and M2 affects system 

performance, particularly the tolerance to 

fiber nonlinearities. 

 The power ratio of the two QAM symbols  

should be optimized to obtain the same 

BER for the two formats  the power of the 

lower order QAM should be less than the 

higher order QAM, since the latter is more 

sensitive to noise. 

40

Zhuge et al., JLT, vol. 31, p. 2621, 2013
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Flexibility

41

Zhou et al., Comm. Mag., vol. 51, p. 41, 2013

40 Gbaud, 50 GHz frequency spacing
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4D modulation formats with set-partitioning

 The idea is to partition the constellation points into smaller subsets that have an 

increased minimum Euclidean distance and a lower data-rate with respect to 

the original constellation. 

 Advantage: some DSP algorithms designed for standard QAM constellations 

may be reused.

 Examples:

 Polarization-switched QPSK 

(4D constellation composed of 8 points)

 16QAM set partitioning

42

Agrell et al., JLT, vol. 29, p. 5115, 2009

Renaudier et al., OFC 2013, p. OTu3B.1
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PS-QPSK coordinates in the 4D space

 Only one polarization at a time is transmitted  polarization-switched QPSK

43
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PS-QPSK coordinates in the 4D space

44
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Flexibility

 Reach versus net SE for Nyquist-WDM transmission of selected PM and 4D 

modulation formats over SSMF at a symbol rate of 32 GBaud assuming 

SD-FEC with 23% overhead and BER = 2 × 10−2 threshold. 

46

Fischer et al., JLT, vol. 32, p. 2886, 2014

 Solid black lines denote the contours of 

constant SE × reach products belonging to 

the best and worst modulation format.
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 PS is based on the transmission of the symbols ai of a 

standard QAM constellation with different probabilities in 

order to approximate the optimum symbol distribution 

over AWGN channels and thus reduce the QAM shaping 

loss.

47

Probabilistic Shaping (PS)S)

 
2

ia

i beaP




=0.83 =0.46

Uniform 64QAM 

PS-64QAM 

  ia

i beaP




Pilori et al., JLT, 

vol. 37, p. 501, 2018

Buchali et al., JLT, 

vol. 32, p. 1599, 2015

 Using PS, lower-energy (i.e. inner) points 

of  a constellation are transmitted with 

higher probability.

 Two possible distributions are:
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 DM (distribution matcher): block that converts an input stream of bits uniformly 

distributed into an output stream of QAM symbols with the desired distribution 

48

Example of generation of PS signals

Buchali et al., JLT, vol. 32, p. 1599, 2015

The implementation is not 

trivial, since the FEC 

encoder should maintain 

the probability distribution 

of symbols.
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Flexibility

 The constellation entropy (or, equivalently, the net data rate) can be changed by 

changing the value of the parameter   high flexibility

49

PS-64QAM  Each curve corresponds to a different 

value of .  

 Shaping reduces the maximum 

achievable mutual information (or, 

equivalently, transmit rate), 

represented by the MI floor for high 

values of SNR. 

 This value corresponds to the 

constellation entropy:



Thick line: “envelope” of 

the maximum values

   2( ) logi i

i

H C P a P a 
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Flexibility

 The constellation entropy (or, equivalently, the net data rate) can be changed by 

changing the value of the parameter   high flexibility

49

PS-64QAM  Each curve corresponds to a different 

value of .  

 Shaping reduces the maximum 

achievable mutual information (or, 

equivalently, transmit rate), 

represented by the MI floor for high 

values of SNR. 

 This value corresponds to the 

constellation entropy:



Thick line: “envelope” of 

the maximum values

   2( ) logi i

i

H C P a P a 

10% FEC overhead
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 The optimum value of   depends on the SNR. The performance of the PS 

constellations optimized for each value of SNR are shown as blue lines in the 

below plot:

50

Ultimate achievable performance

• The gain of PS 

constellations w.r.t. 

uniformly-distributed 

constellations is 

maximum for mid-values 

of SNR, then it gets to 

zero when the MI gets 

close to the 

constellation entropy

Pilori et al., JLT, vol. 37,  p. 501, 2018
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Link parameters.

EDFAs 

noise 

figure

5.2 dB

Chromatic 

dispersion

20.17 

ps/(nmkm)

Non-

linearity 

coefficient

0.75 W-1km-1

Fiber 

attenuation 
0.16 db/km

Total span  

loss
18 dB
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Experimental setup

Symbol rate: 16 Gbaud

Pilori et al., JLT, vol. 37,  2018
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 Graphical illustration of the four employed probability distributions for PS-64QAM. 

H(P) = 4 bits/symb H(P)=4.33 bits/symb H(P)= 5 bits/symb H(P)=5.17 bits/symb

52

PS-64QAM symbol probabilities

Same entropy 

as 16QAM
Same entropy 

as 32QAM

Same FEC rate 

as 16QAM

Same FEC rate 

as 32QAM
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 The percentage of reach increase w.r.t. uniform 16QAM is between 10% and 25% at MI=3.6 

bits/QAM symb. The percentage of reach increase  w.r.t. uniform 32QAM is between 15% and 

25% at MI=4.5 bits/QAM symb.

 The sensitivity gain translated in an equivalent reach gain, without any significant nonlinearity 

penalty for the PS constellations.

54

Performance after long-haul propagation

Solid lines: EGN model 

prediction

Dots: experimental 

measurements.
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5) Modulation format independent 

DSP algorithms

55
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DSP functions
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Format-independent adaptive equalizer and CPE

 Popular blind adaptive equalizers update 

strategies are matched to the specific 

modulation format.

 Algorithms for carrier phase recovery which are 

suitable for arbitrary PM-mQAM formats are 

extremely complex for high-cardinality constellations.

 Reasonable way to a cost-efficient and format-independent flexible transceiver 

implementation: data-aided algorithms, based on the use of pilot tones or 

pilot sequences that are inserted in the payload at the transmitter 

additional overhead 

 At the receiver, the pilot information is evaluated independently of the payload and 

its modulation format.

57

Pfau et al., JLT, vol. 27, p.3614,  2009

Zhou, PTL, vol. 22, p. 1051, 2010.
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Pilot tones based DSP

 Pilot tones: continuous 

wave tones inserted in a 

gap of the payload 

spectrum, e.g. they can 

be inserted between two 

adjacent channels or at 

the middle of MSC 

spectrum. 

 They can be used to 

track time-continuous 

effects like polarization 

rotations, frequency 

offset variations and 

phase noise. 

58

Morsy-Osman et al., Opt. Exp., vol. 19, p. B329, 2011
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Pilot sequences based DSP

 Pilot sequences (or 
training sequences): 
periodically inserted 
in time domain at the 
payload symbol rate. 

 They can be used to 
estimate the channel 
transfer function and 
polarization rotations, 
residual CD, PMD as 
well as phase noise 
and frequency offset 
variations.

59

Zhuge et al., Opt. Exp., vol. 22, p. 2278,  2014
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Summary

 Advanced modulation 

format and digital signal 

processing techniques 

that can be used to 

increase the capacity 

and/or the reach of 

optical transmission 

systems, as well as the 

flexibility of optical 

transceivers, have 

been reviewed. 
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