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A review of WDM-PON reflective architecture

The recent FSAN standardization of TWDM-PON for 

NG-PON2

Self-coherent reflective PON architecture

Discussion and conclusion

Outline of the presentation

3



WDM-PON architectures

Reflective solutions 

for upstream 

modulation

W
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AWG filter inside the ODN for WDM demultiplexing

N pairs of wavelengths (a pair per user)

Architecture of “pure” WDM-PON
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colorless



At the ONU side, a tunable laser and a tunable 

filter required for US and DS wavelengths

Very flexible solution

No particular transmission issue

Cost is high for wide-tunability (such as for full C 

band)
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WDM-PON and upstream reflective modulation
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From a transmission point of view:

PROs:

No need for tunable laser at ONU

CONs:

Limited ODN power budget (“ODN loss” in the 

following) due to several spurious effects, including:

Rayleigh Back-Scattering (RBS) and concentrated 

reflections

Limited receiver power

US Reflective WDM-PON
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Rayleigh back-scattering and ODN loss

Let’s assume that the upstream wavelengths 

are generated at the central office, and 

modulated in reflection at the ONU

We remind  that the spurious back reflections 

for an SMF fiber are of the order of 30-35 dB 

below the forward propagating signal, due to:

Concentrated reflections on components

Rayleigh back scattering
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Impact of spurious back-reflections
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Let’s assume for instance:

ODN loss =25 dB

ODN spurious reflections=35 dB

RSOA gain=20 dB

(S/I)= 5 dB

The interference is at the same wavelength as the 

useful signal

For a standard direct-detection receiver, even for the 

best tricks proposed in the literature to mitigate RBS:

(S/I)>5-10 dB 
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RBS and spurious reflection set an important limit to 

maximum ODN loss (i.e. the “class” of the PON)

To improve the situation, one could in principle 

increase the gain GRSOA of the reflective modulator to 

improve (S/I)

Anyway, there are technological component issues that 

limits the maximum gain you can obtain with an RSOA

Another issues arise again from RBS, on the ONU side

Increasing the reflective modulator gain

12

RSOA

ONU

RSOAG

Spurious back-

reflection

ONU

ODNR

A

W

G



13

Even neglecting the RBS issue, the received power 

quickly decreases for increasing LODN, since it 

counts twice

Let’s assume for instance:

ODN loss =35 dB (Class C+), RSOA gain=20 dB, and 

PCW=10 dBm

We get PRX= -40 dBm
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The recent FSAN decision on 

TWDM-PON

Is this the end of reflective

WDM-PON ?? 
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FSAN TWDM-PON architecture 
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Picture taken

from:

Recently defined by FSAN, now being processed by ITU, 

it will become ITU-T G.989.1 “40-Gigabit-capable 

passive optical networks (NG-PON2)”

Colorless ONUs with DS 

tunable filters and US 

tunable lasers



TDMA on each of the 4 wavelengths

Up to 64 users on each lambda

Splitter-based PON

No AWG in the ODN

ODN power budgets will be the same as GPON and 

XGPON, thus also including class C (32dB) and C+ (35 

dB)

The TX/RX power budget requirements is actually 

increased due to the additional optical filters 

required to handle WDM at the ONU and OLT

TWDM-PON key features
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(At least) three issues should be addressed:

1. Stick with the splitter-based architecture (i.e. no 

AWG in the ODN)

2. US transmission should allow high ODN loss 

 Treated in details in the rest of the presentation

3. Make US TDMA possible even on reflective PON

 Briefly mentioned at the end of this presentation

Can reflective PON still be applied in such scenario?
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What if we are able to solve the previous 3 points?

The key “new” optical components that will be 

required by FSAN TWDM-PON are Tunable lasers and 

Tunable filters at the ONU side

They should both have a precision compatible with a 

100 GHz wavelength grid, and be able to tune on 4 

wavelengths

They should operate on a very wide temperature range

They should have a target price compatible with ONU

For upstream, ONU tunable lasers will determine the 

absolute accuracy for each wavelength

In the longer term, if more than 4-8 wavelengths 

will be used, this issue will be particularly critical 

18



Tunability requirements for TWDM-PON

DOWNSTREAM: the tunable filter at the ONU can be 

locked on one of the incoming wavelength, 

The absolute wavelength accuracy is thus set at the 

Central Office, NOT at the ONU

Less critical

UPSTREAM: the tunable laser at the ONU should be 

tuned on the proper wavelength without any reference

The absolute wavelength accuracy is thus determined by 

the ONU tunable lasers, not by the Central office

MORE critical that the downstream situation 
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In the architecture above, the upstream wavelength grid 

is generated at the central office

Its accuracy is thus set by the CO

Using centralized wavelength generation and R-PON 
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Conclusion

We will show in the next slides that a particular 

implementation of reflective PON can achieve 

high ODN loss and, possibly, US TDMA

Its potential advantages would thus be:

NO tunable lasers at ONU (only tunable filters)

Very precise DWDM comb can be generated in the CO

Upgrades to 50 GHz spacing, or to a high number of 

wavelengths may thus be easier
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Achieving high ODN losses in 

reflective PONs

Introducing self-coherent

detection on the upstream 

reflectively-modulated signals
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Proposed architecture

Self-coherent reflective PON
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The overall reflective, self-coherent architecture
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Experimental results:

RSOA as modulator

1.25 Gbit/s upstream

Installed metropolitan fiber 

testbed
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Experimental setup
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BER vs. ODN loss, different launched power

27

Standard 

setup

>40 dB

cw

cw

cw

cw

Faraday

setup

cw

cw

cw

cw

>42 dB



The achieved ODN loss (≥40dB) are significantly 

higher than those that are achieved by reflective 

PON solutions

Coherent detection + DSP is key in this respect

Better sensitivity that direct detection even in the 

back-to-back case

We had nearly -50 dBm sensitivity using a commercial 

coherent receiver at 1.25 Gbps

Much larger resilience to spurious back reflections

Let’s analyze this last point in the following slides

Interpreting the results
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RBS levels: estimation by hand

Let’s consider the following values:

Demonstrated ODN loss = 42dB

ONU gain in this conditions = 24 dB

RBS 35dB below the launched power
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The different contributions to reflections

Using a self-coherent receiver: 

The RBS reflections appears as added close to 

“electrical” DC it can be filtered out by electrical 

high-pass filters

The upstream Brillouin component (if relevant) is 

out of band compared to the useful upstream signal
30
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An optimized high-pass filter (HPF) in the coherent 

receiver was fundamental to solve the problem. Two 

possible options:

Analog electrical filtering before the ADCs

Digital filtering in the DSP section after the ADCs
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In order to allow a high frequency cut-off we 

introduced 8B/10B coding to minimize baseline 

wander effects on the useful signal

Introducing 8B/10B
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We demonstrated >40dB ODN loss at 1.25 Gbit/s 

At higher bit rates:

Coherent receiver theoretical sensitivity is inversely 

proportional to the bit rate. Thus, compared to our 

1.25 Gbit/s experiments, we should expect:

3dB penalty at 2.5 Gbit/s, and 9 dB at 10 Gbit/s

But ODN loss counts twice

1.5dB ODN loss penalty at 2.5 Gbit/s, and 4.5 dB at 

10 Gbit/s

RBS impact will likely be even smaller, since the 

“spectral notch” in the signal will be at higher 

frequency

Inferring ODN loss at higher bit rates
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In conclusion, we can expect power budget at 2.5 

Gbps (XGPON upstream rate) better than the 35 dB 

ODN loss required by class C+

Thus, completely compatible with TWDM-PON 

upstream at 2.5 Gbps

Even at 10 Gbps, class C (32 dB) could be 

achievable

Assuming that RSOA bandwidth usage is optimized, 

see for instance next presentation, or other type of 

modulators (SOA+REAM)

Conclusion on ODN loss in self-coherent PON
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Reflective coherent PON

Can we make them TDMA-based?
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Required developments: Burst mode

The self coherent solution shown in the previous 

slides was demonstrated using one dedicated 

wavelength per ONU

This could find applications in wavelength overly 

solutions, for instance for mobile backhauling

Anyway, in residential PON:

One dedicated wavelength per user does not offer 

enough granularity and, at least for residential 

users, is likely too expensive

Moreover, a coherent receiver per single user is 

likely too expensive, even inside the central office
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Burst mode, self-coherent reflective PON

To solve the previous issues, and thus make it 

completely compatible with TWDM-PON, a burst-

mode operation would be needed, requiring:

1. Burst-mode TX (using RSOA or other reflective 

modulators)

2. Coherent burst mode detection

We have very recently started this activity, obtaining 

only preliminary results
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Possible TX options under investigation:

Using only one RSOA driven as it is usually done for 

GPON and XGPON burst-mode lasers

Use a SOA + REAM combination

Burst mode reflective transmission
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 LMS (training)

The first 127 bits in each bursts are used for 

synch and for training the LMS algorithms

 LMS (tracking)

After the first 127 bits, the LMS algorithm is 

switched to “decision directed” to elaborate 

the payload of the burst

Coherent burst mode receiver
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Back-to-back results
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 Measurements done on:

 90 packets in burst mode (approx 90.000 bits)

 100.000 bits in continuous mode



Ok, let’s summarize…



We showed that self-coherent reflective PON:

Allows for high ODN-loss 

Even 35dB, as required by class C+, can be achieved

Can be made burst mode for TDMA

Wavelength accuracy is set by the central office

No tunable lasers needed at OLT

Only tunable filters locked to incoming CW 

wavelengths

This solution seems compatible with TWDM-PON, 

and easily scalable to DWDM with many lambdas

Self-coherent reflective PON
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An available high ODN loss (>35dB) can open 

innovative mixed solutions, such as:

Envisioning mixed solution
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Reflective coherent PON

What about FDMA rather than 

TDMA?

EU FABULOUS project



The FABULOUS project
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FDMA architecture in FABULOUS
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In case you are interested:
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