
Optimization of self-coherent reflective PON 

to achieve a new record 42 dB ODN power 

budget after 100 km at 1.25 Gbps

S. Straullu (2), S. Abrate(2),  F. Forghieri(3), V. Ferrero(1), 

and R. Gaudino(1)

(1) Politecnico di Torino, 

Corso Duca degli Abruzzi 24, 10129 Torino, Italy,

E-mail: roberto.gaudino@polito.it

(2) Istituto Superiore “Mario Boella” (ISMB), 

Via P. C. Boggio 61, 10138 Torino, Italy

(3) CISCO Photonics, 

Via Philips 12, 20059, Monza, Milan, Italy 

Post-deadline papers

mailto:roberto.gaudino@polito.it


2

SCENARIO: Optimization of reflective PON upstream 

path 

Upgrades from results presented in regular paper

We.1.B.3 on Introducing self-coherent detection at 

OLT

OUTLINE of the presentation:

Scenario and rationale of self-coherent OLT

Experimental setup

Results and system optimization

Conclusions
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Reflective PON and 

self-coherent receivers

(from regular paper We.1.B.3)



Features:

Significantly improved sensitivity compared to DD

Possibility to greatly counteract transmission 

impairments by digital signal processing (DSP)

The local oscillator signal comes for free… 

Self-coherent receiver at OLT in reflective PON
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The different contributions to reflections

Using a self-coherent receiver: 

The RBS reflections appears as added close to DC 

it can be filtered out by electrical high-pass filters

The upstream Brillouin component (if relevant) is 

out of band compared to the useful upstream signal
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Best results from regular paper
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We performed BER repeated measurements when 

randomly changing the link birefringence

We found a significant variation of the BER results, 

including occasional “our of service” situations 
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Upgrades 

We focused on 

understanding 

and solving this 

issue



The impact of spurious back 

reflections

The countermeasures



RBS levels – a theoretical assesment

Let’s assume the following values:

Target ODN loss = 42dB

ONU gain in this conditions = 24 dB

RBS 35dB below the launched power
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We attributed the time-variation in our BER 

measurements to the random nature of the RBS (in 

terms of both amplitude and polarization state)

Impact of the RBS noise

Received RBS spectrum 

for different launched 

CW powers Pf

It is evaluated on the 

electrical signals after 

self-coherent detection

(modulated signal is off)
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An optimized high-pass filter (HPF) in the coherent 

receiver was fundamental to solve the problem. Two 

possible options:

Digital filtering in the DSP section after the ADCs

Analog electrical filtering before the ADCs
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Filtering the RBS noise
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In order to allow a high frequency cut-off we 

introduced 8B/10B coding to minimize baseline 

wander effects on the useful signal

Introducing 8B/10B
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Optimization of the HPF in DSP

We performed an extensive optimization of the  

cut-off frequencies of an HP filter
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Optimization of the HPF in DSP
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 In our regular paper we used only DSP high-pass filters

Even for optimized cut-off values (around 40-50 MHz), 

our experimental results were worst than expected (and 

showed the previously mentioned BER instabilities)

We found that in some situations the RBS “noise” at 

low frequency was so strong that it saturated the ADC 

and/or generate quantization problems on the useful 

signal

This happened only on some specific polarization states 

between the signal and the RBS

The problem was largely solved inserting an analog 

electrical filter before the ADC 
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Filtering the RBS noise



0.5 milliseconds acquisition time

Received signals at ADC
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WITHOUT filters before the ADC

WITH analog electrical HPF at 50 MHz

At least four times smaller dynamic on the 

ADC 

-> at least 2 quantization bits gained in 

ADC conversion



Experimental results



Experimental setup
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BER vs. ODN loss, different launched power
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ODN loss vs. Lauched power at BER=10-3
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Long repeated measurement on BER
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Approx. 8 hours long measurement (one night)

1000 off-line BER measurements obtained while 

continuously scrambling link birefringence



CONCLUSION
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Conclusions

We have show techniques to optimize self-coherent 
reflective PON systems

Analog and digital high-pass filtering

8B/10B coding

Faraday rotation at ONU

We showed that these techniques:

Solved the sporadic high-BER occurrences

Increase the achievable power budget to more than 42 dB 
ODN loss for an optimized setup (Faraday rotation and 
high launched power)

Even for a standard setup and lower launched power 
(such as 6dBm) we still achieve more than 39dB ODN loss
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