

Optimization of self-coherent reflective PON to achieve a new record 42 dB ODN power budget after 100 km at 1.25 Gbps

S. Straullu ⁽²⁾, S. Abrate⁽²⁾, F. Forghieri⁽³⁾, V. Ferrero⁽¹⁾, and <u>R. Gaudino⁽¹⁾</u>

(1) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, E-mail: <u>roberto.gaudino@polito.it</u>

(2) Istituto Superiore "Mario Boella" (ISMB), Via P. C. Boggio 61, 10138 Torino, Italy

(3) CISCO Photonics, Via Philips 12, 20059, Monza, Milan, Italy

cisco

Target and Outline

OPTCOM

 SCENARIO: Optimization of <u>reflective PON upstream</u> <u>path</u>

Upgrades from results presented in regular paper
 We.1.B.3 on Introducing self-coherent detection at
 OLT

OUTLINE of the presentation:

- Scenario and rationale of self-coherent OLT
- Experimental setup
- Results and system optimization
- Conclusions

Reflective PON and self-coherent receivers

(from regular paper We.1.B.3)

Self-coherent receiver at OLT in reflective PON

Features:

- Significantly improved sensitivity compared to DD
- Possibility to greatly counteract transmission impairments by digital signal processing (DSP)
- The local oscillator signal comes for free...

- Using a self-coherent receiver:
 - ► The RBS reflections appears as added close to DC
 →it can be filtered out by electrical high-pass filters
 - The upstream Brillouin component (if relevant) is out of band compared to the useful upstream signal

Best results from regular paper

- We performed BER repeated measurements when randomly changing the link birefringence
 - We found a significant variation of the BER results, including occasional "our of service" situations

We focused on understanding and solving this issue

The impact of spurious back reflections

The countermeasures

RBS levels - a theoretical assessment

Let's assume the following values:

- Target ODN loss = 42dB
- ONU gain in this conditions = 24 dB
- RBS 35dB below the launched power

Impact of the RBS noise

OPTCOM

We attributed the time-variation in our BER measurements to the random nature of the RBS (in terms of both amplitude and polarization state)

Received RBS spectrum for different launched CW powers P_f

It is evaluated on the electrical signals after self-coherent detection

(modulated signal is off)

cisco

Filtering the RBS noise

- An optimized high-pass filter (HPF) in the coherent receiver was fundamental to solve the problem. Two possible options:
 - Digital filtering in the DSP section after the ADCs
 - Analog electrical filtering before the ADCs

OPTCOM

Introducing 8B/10B

OPTCOM

In order to allow a high frequency cut-off we introduced 8B/10B coding to minimize baseline wander effects on the useful signal

OPTCOM

We performed an extensive optimization of the cut-off frequencies of an HP filter

Optimization of the HPF in DSP

Standard setup, 80km, P_F=9dBm,

OPTCOM

Filtering the RBS noise

🤣 ОРТСОМ

- In our regular paper we used only DSP high-pass filters
 - Even for optimized cut-off values (around 40-50 MHz), our experimental results were worst than expected (and showed the previously mentioned BER instabilities)
- We found that in some situations the RBS "noise" at low frequency was so strong that it saturated the ADC and/or generate quantization problems on the useful signal
 - This happened only on some specific polarization states between the signal and the RBS

The problem was largely solved inserting <u>an analog</u> <u>electrical filter before the ADC</u>

Received signals at ADC

Experimental results

Experimental setup

BER vs. ODN loss, different launched power

ODN loss vs. Lauched power at BER=10⁻³

🚯 OPTCOM

Long repeated measurement on BER

OPTCOM

CONCLUSION

We have show techniques to optimize self-coherent reflective PON systems

- Analog and digital high-pass filtering
- 8B/10B coding
- Faraday rotation at ONU
- We showed that these techniques:
 - Solved the sporadic high-BER occurrences
 - Increase the achievable power budget to more than 42 dB ODN loss for an optimized setup (Faraday rotation and high launched power)
 - Even for a standard setup and lower launched power (such as 6dBm) we still achieve more than 39dB ODN loss

Thank you for your attention!

Optimization of self-coherent reflective PON to achieve a new record 42 dB ODN power budget after 100 km at 1.25 Gbps

> S. Straullu ⁽²⁾, S. Abrate⁽²⁾, F. Forghieri⁽³⁾, V. Ferrero⁽¹⁾, and <u>R. Gaudino⁽¹⁾</u>

(1) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, E-mail: <u>roberto.gaudino@polito.it</u>

(2) Istituto Superiore "Mario Boella" (ISMB), Via P. C. Boggio 61, 10138 Torino, Italy

(3) CISCO Photonics, Via Philips 12, 20059, Monza, Milan, Italy

cisco