On the use of DFB Lasers for Coherent PON

OPTCOM

<u>R. Gaudino⁽¹⁾</u>, V. Curri⁽¹⁾, G. Bosco⁽¹⁾, G. Rizzelli⁽¹⁾, A. Nespola⁽²⁾, D. Zeolla⁽²⁾, S. Straullu⁽²⁾, S. Capriata⁽³⁾, P. Solina⁽³⁾

(1) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, E-mail: <u>roberto.gaudino@polito.it</u>

(2) Istituto Superiore "Mario Boella" (ISMB), Via P. C. Boggio 61, 10138 Torino, Italy

(3) Telecom Italia, Via G. Reiss Romoli 274, 10148, Torino, Italy

OPTCOM - Dipartimento di Elettronica Politecnico di Torino - Torino - Italy www.optcom.polito.it

Target and Outline

TARGET:

- Optical coherent receivers are proposed for some NG-PON2 architecture
- In this scenario, we investigate on the use of DFB lasers (rather than more expensive ECL lasers)

OUTLINE of the presentation:

- Scenario
- Experimental setup
- Results and DSP optimization
- Conclusions

Several research centers have started to propose coherent receivers in PON. Just to name a few:

Pubblication / Authors	Coherent receiver position
Demonstration of a Coherent UDWDM-PON with Real- Time Processing OSA/OFC/NFOEC 2011 Sylvia Smolorz ¹ , Erich Gottwald ¹ , Harald Rohde ¹ , David Smith ² , Alistair Poustie ² I Nokia Siemens Networks GmbH&Co KG, St. Martinstr. 76, 80240 Munich, Germany 2 CIP Technologies, Adastral Park, Martlesham Heath, Ipswich, IP5 3RE, U.K. sylvia.smolorz@nsn.com	OLT and ONU
Long-Reach Coherent WDM PON Employing Self-Polarization-Stabilization Technique K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, <i>Member, IEEE</i> , A. Agata, Y. Horiuchi, M. Suzuki, <i>Fellow, IEEE</i> , and Y. C. Chung, <i>Fellow, IEEE, Fellow, OSA</i> JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 4, FEBRUARY 15, 2011	OLT only, self coherent

Coherent receivers in NG-PON2

🔮 OPTCOM

Pubblication / Authors	Coherent receiver position
A Novel Symmetric Lightwave Centralized WDM-OFDM- PON Architecture with OFDM-Remodulated ONUs and a Coherent Receiver OLT Ming-Fang Huang, Dayou Qian and Neda Cvijetic NEC Laboratories America, Princeton, NJ 08540, USA mhuang@nec-labs.com ECOC Technical Digest © 2011 OSA	OLT only
Self-Coherent Single Wavelength SC-FDMA PON Uplink OFC 2012 OW4B.4 for NG-PON2 B. Charbonnier ⁽¹⁾ , A. Lebreton ⁽¹⁾ , S. Straullu ⁽³⁾ , V. Ferrero ⁽²⁾ , A. Sanna ⁽²⁾ , R. Gaudino ⁽²⁾ (1) France Télécom R&D Réseaux d'Accès (RESA) - ANA/ASHA (2) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, roberto.gaudino@polito.it (3) Istituto Superiore "Mario Boella" (ISMB), Via P. C. Boggio 61, 10138 Torino, Italy	OLT only, self coherent

Target of our work

- Most of the coherent PON demonstrators so far have used external-cavity lasers (ECL), due to their very narrow linewidth, thus giving negligible phase noise penalty
- In our work, we investigated on the use of commercial, lower cost DFB lasers
- We focus on PM-QPSK transmission at 40 Gbit/s (10 Gbaud)
 - Experiments
 - DSP parameter optimization

EXPERIMENTAL SETUP

System parameter

🔮 OPTCOM

- The used system is a 40 Gbps PM-QPSK system
- We use a coherent receiver WITHOUT optical amplification
 - Local oscillator power = 12 dBm

Digital signal processing

- The digital signal-processing (DSP) section in the coherent receiver is a quite standard algorithm based on
 - 1. CMA adaptive equalization
 - 2. Viterbi-Viterbi Carrier-Phase estimation (CPE)

Digital signal processing

The two free parameters we used in our optimizations are:

• Equalizer memory in number of samples N_{FIR}

CPE memory in number of samples

The used lasers

💔 OPTCOM

- Laboratory ECL lasers (linewidth in the KHz range) for both the transmitter and Local Oscillator
 - Used as a reference

- Commercial DFB lasers (again both for TX and LO)
 - JDS-Uniphase CQF935/208-19305

We obtained similar results with several other commercial DFB lasers for WDM

CQF935/208 Series

1550 nm CW DFB Lasers with PM Fiber for WDM Applications

EXPERIMENTAL RESULTS

We compared the following two situations:

- 1. <u>"All-ECL" case</u> (ECLs for both the transmitter and the local oscillator)
- 2. <u>"All DFB" case</u> (DFBs for both the transmitter and the local oscillator)

Back-to-back measurements

- These results were obtained after an optimization of two free DSP parameters:
- 1. The length of the adaptive equalizer filter N_{FIR}
- 2. The memory of the CPE algorithm N_{CPE}

Optimizing vs. N_{CPE}

Optimizing vs. N_{CPE}

15

Optimizing vs. N_{FIR}

COMMENTS ON THE RESULTS

Comparison with simulation

Laser linewidth definition

- We simulated the impact of phase noise on the considered system as a function of the laser linewidth (for the used Viterbi-Viterbi CPE algorithm)
- The datasheet of the used <u>DFB lasers</u> indicates a 10MHz linewidth

But with this value the system should not work!

... back in the lab to measure the linewidth!

- We used the following approach:
 - The phase evolution was obtained using the data collected with the coherent receiver (turning off the signal modulation)
 - We used the following formula (Lorentzian laser model)

$$\sigma_{\Delta\phi}^2 = 2\pi \cdot \Delta f \cdot T_{OBS}$$

- We found that the <u>"short term" phase noise is actually</u> <u>much lower</u> than what is declared in the datasheet
- When estimated over a few nanosecond (the memory of the CPE), the phase noise corresponds to a "short term" linewidth of about 1 MHz

CONCLUSION

www.optcom.polito.it

Conclusion

- We showed that for 10 Gbaud PM-QPSK modulation the used of commercial DFB laser does not give significant penalty provided that DSP parameters are optimized
- This result holds also for other modulations (single polarization QPSK, OOK, BPSK) that are proposed for some NG-PON2 solutions, for the same baud rate (10 Gbaud)
- Other more complex modulation formats (such as coherently received OFDM) would be much more demanding in terms of laser linewidth

Thank you for your attention!

R. Gaudino⁽¹⁾, V. Curri⁽¹⁾, G. Bosco⁽¹⁾, G. Rizzelli⁽¹⁾, A. Nespola⁽²⁾, D. Zeolla⁽²⁾, S. Straullu⁽²⁾, S. Capriata⁽³⁾, P. Solina⁽³⁾

(1) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, E-mail: <u>roberto.gaudino@polito.it</u>

(2) Istituto Superiore "Mario Boella" (ISMB), Via P. C. Boggio 61, 10138 Torino, Italy

(3) Telecom Italia, Via G. Reiss Romoli 274, 10148, Torino, Italy

OPTCOM - Dipartimento di Elettronica Politecnico di Torino - Torino - Italy www.optcom.polito.it

BACK-UP SLIDE (FROM TILAB WORK)

Long term measurements

About 8 minutes interval between consecutive acquisition

DFB + 40 km SMF (may 2011)

- Previously extracted waveforms (DFB Mitsubishi) post-processed with "new" DSP.
- P_{RX} values could be inaccurate due to 1.7 dBm correction between Power Meter and Oscilloscope measurement.